

Power Plants-

Instrumentation Applications

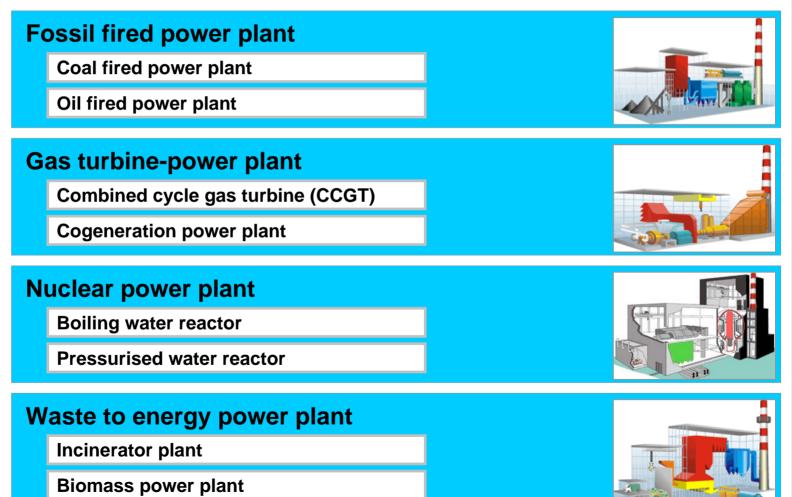
05/09/2006 Ravi Jethra

People for Process Automation

Company Profile :

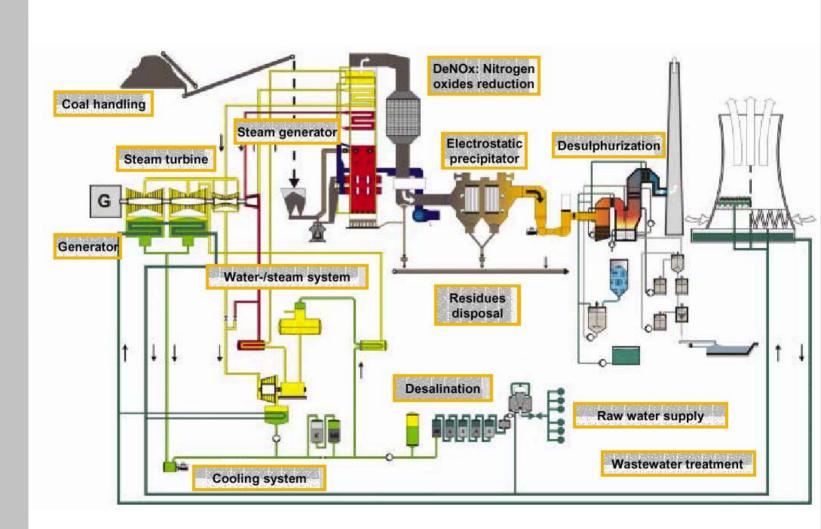
- International solution supplier with a wide range of process measurement instrumentation for production and logistics in the process industries
- Consultancy and service for our customers in 85 countries
- One of the largest privately owned companies in the automation industry
- Headquarter in Reinach (Switzerland)
- CEO: Klaus Endress

Our Offering: Leading Edge Field Instrumentation


05/09/2006 RAVI JETHRA

Segmentation of different processes (general information)

Power stations



Carnegie Mellon EIC Seminar July18, 2007 Coal Fired Power Plant

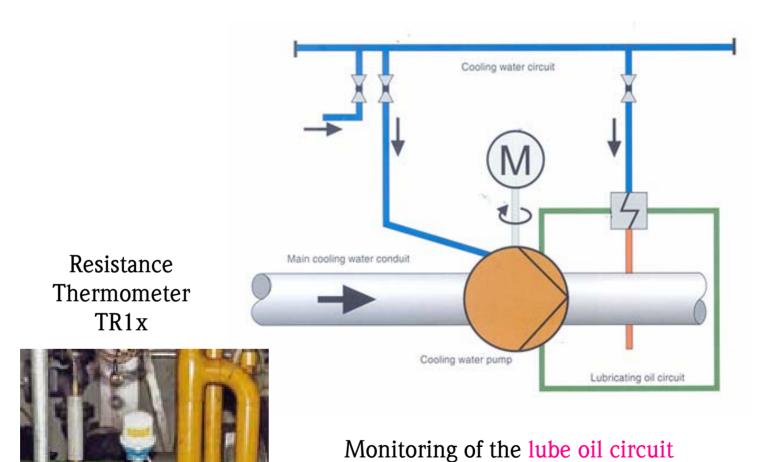
Process

05/09/2006 RAVI JETHRA

Temperature Applications

- Air/Ignition System : Air pre-heater and Ignitors,
- Environmental System : Preipitator Inlet and outlet temperatures
- Steam generation/System : water flowing from hotwell condensor, feedwater heaters and lines in/out of steam drum, steam drum to superheater, main steam line to turbine, and cold and hot reheat steam lines.
- Steam Quality :
 - Feedwater Heaters
 - Turbines
- Stuffing Box

Temperature - Conventional power plants


- Thermocouples and transmitters in use throughout the plant
- Electric fuel gas preheaters
- Electric fuel oil heaters and forwarding systems
- Lube oil heaters and systems
- Turbine water wash systems
- Turbine inlet and exhaust flow heating systems
- Water storage tank heating systems
- Steam superheaters

05/09/2006 RAVI JETHRA

Temperature measurement: cooling systems

at the cooling water pump to avoid

damages to the pumps

Temperature measurement: oil lines

Temperature monitoring in the oil lines to the main combustion

Thermocouple TC15 + weld in thermowell (bar stock) for high temperature and high pressure applications

Flue Gas temperatures

Temperature Measurement up to 1600 °C

TAF12

with ceramic thermowell for high temperature applications

Astrid Kaiser

05069/2006 RAVI JETHRA

Slide 15

TAF16

in different steel grades (INCONEL,

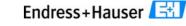
SS446,...)

People for Process Automation

Custom Temperature sensors

05/09/2006 RAVI JETHRA

18 inserts, 900 °F, 3000 psi Application


Flow Measuring Principles Segmentation

	Conductive liquids	Non conductive liquids	Gas	Steam
PROline Promag				
PROline Promass	₽		R	a contraction of the second se
Prowirl	₩		R	
PROline Prosonic Flow	.			
Deltatop Deltaset			R	
T-mass			R	

05/09/2006 RAVI JETHRA

Carnegie Mellon EIC Seminar July18, 2007 Raw Water Flow Metering

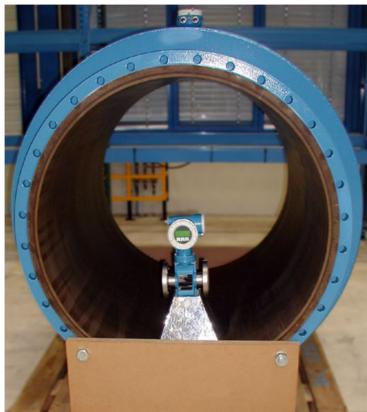
05/09/2006 RAVI JETHRA

Measurement technology

Electromagnetic flowmeter Promag (DN80, hard rubber)

Process

- Measurement of the raw water volume, which is supplied to the water desalination system
- Material: raw water
- Operation: max. 4 bar, max. 25 °C Meas. range: to 160 m /h³

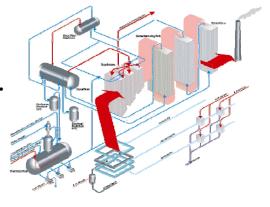

Characteristics

- Promag is well suited for standard
- applications in the water and wastewater sector
 - Simple and straightforward commissioning
- with Quick Setup saves time
- The flange instrument Promag requires no additonal instrumentation

Electromagnetic flow meter

- No pressure loss
- Unobstructed sensor tube (piggable)
- Wide diameter range (+ wid measuring range)
- High measuring accuracy
- Largely independent of flow profile

05/09/2006 RAVI JETHRA


Vortex Flow meter

Туре:	Prowirl 72F DN40/1.5"
Media:	Cooling Water
Temp:	+55-100C/130F-212F
Pressure:	150 PSI

Endress+Hauser

Other info:

Process required a minimum D/P to be present. Vortex flow allows for higher efficiency and Higher accuracy over a wider flow range than DP flow with a primary element.

Power

Flow: Boiler feed water supply

Vortex flow measurement

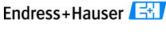
Type: Media: Prowirl 72F Demineralised water

Other info:

Flow measurement of demineralised water, steam and vapors using vortex principle gives wider range and no long term wear influence like DP flow and orifice plate elements.

Flow: compressed air supply

Common

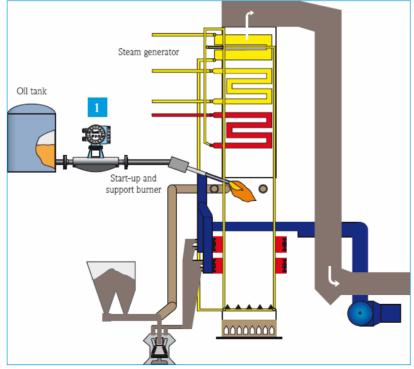

Thermal mass flow measurement

Type: Media: T-mass Air

05/09/2006 RAVI JETHRA

Slide 23

True mass flow with thermal principle. Low pressure loss and wide turn down. No added expense of temperature, primary element, error in calculations like DP flow.



Monitoring the start-up/support burner

- To initiate combustion and/or support coal firing of the boiler, oil is used for the booster and supporting burner
- A precise mass measurement installed in the oil flow line is required for the exact batching and control of the combustion process

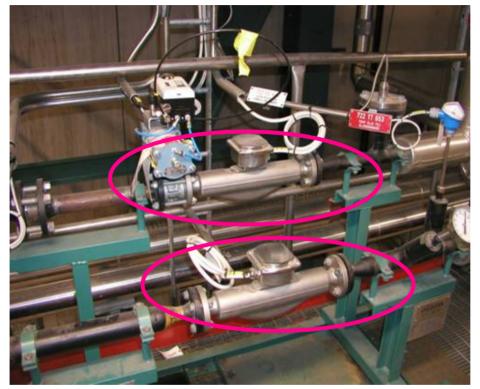
Flow

Carnegie Mellon EIC Seminar July18, 2007

Coriolis mass flow meter

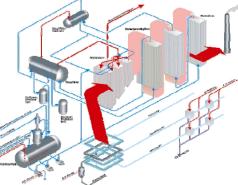
Promass

- Compact device for direct, precise mass measurement (kg/h) – no additional instruments required
- Replaces mechanical systems that can obstruct and block the furnace oil flow line
- No moving parts for unimpeded flow and operation of the furnace
- Safe measurement, even with poor quality oil



Flow: Burning Oil in and outlet

Chemical Recovery

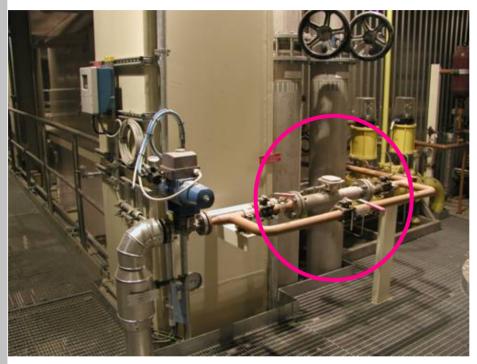


Other info:

Promass Mass Flow meters allow the flow rate to the recovery boilers to measured in mass units to account for changes in the volume due to integrated temperature and density measurement. Proper density ensures less water content and a higher burn rate with less unwanted condensation/steam.

Massflow meter

Гуре:	Promass 83F
Media:	Burning Oil
Range:	0-2 kg/s/ 41bs/s
Гетр:	+95-200 C/200-390F
Pressure:	10-25 BAR/ 150-350PSI


05/09/2006 RAVI JETHRA

Flow: Burning Oil to burner

Chemical Recovery

Massflow measurement

Гуре:	Promass 83 F DN40/1.5"
Range:	0-2,5 kg/s / 0-5.51bs/s
Media:	Burning Oil
Гетр:	+60 C/140 F
Pressure:	200-300 kPa/30-45 PSI

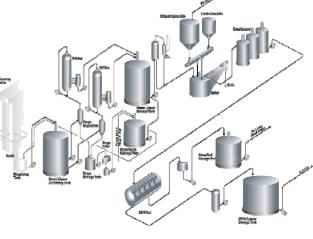
Other info:

Promass provides precision mass and Density measurement of bunker c fuel Oil to the boilers without the need for Long straight run piping or interference From 90 degree elbows and valves due To it's compact size.

05/09/2006 RAVI JETHRA

Flow: Natural Gas

Chemical Recovery

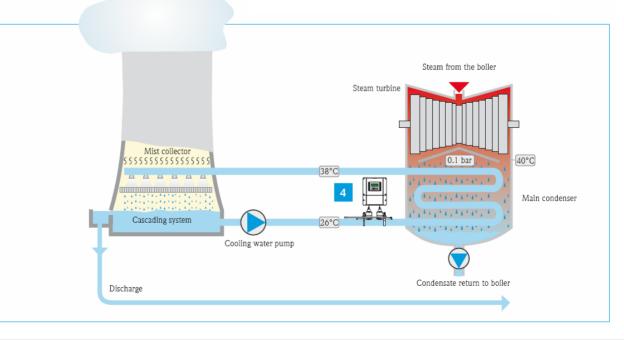


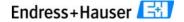
Vortex Flow meter measurement

Prowirl 73 F DN 150/6"
0-3 Nm3 /s/ 0-105 ft3/s
Natural Gas
+25 C/77F
200 kPa/30 PSI

Other info:

Prowirl 73 with integrated temperature Measurement allowed for a real time Calculated volume flow without the Need of an external flow computer. In addition, the device accommodated a Larger operating flow range than DP.




Water volumes in the main cooling water system

- Large volumes of cooling water flow through the main condenser, helping to create a high degree of efficiency in the power plant
- In order to measure cooling water volumes, a measuring device is required which supplies reliable values even with large pipe diameters

05/09/2006 RAVI JETHRA

Ultrasonic flow meter

Prosonic Flow

- Installed directly on pipelines via detecting sensors with transmitter mounted separately
- External installation allowing easy retrofit with no intrusion into the pipe
- Maintenance free with no moving parts
- No obstructions in the pipeline and no pressure loss
- Economical alternative for large diameters up to 4000 mm

Prosonic Flow (clamp on version shown) is used to control cooling water for the main condenser

Slide 32

05/09/2006

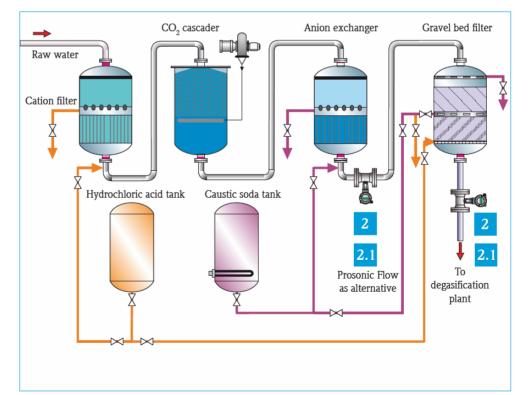
RAVI JETHRA


Ultrasonic inline flow meter

Prosonic Flow inline

- Ideally suited for applications in process control and utility measurement in energy production
- Short inlet and outlet length reducing the space required for installation in comparison to orifice plates and Vortex meters
- Loop powered transmitter with accuracy up to ±0.3%
- Measures the flow of conductive and especially non-conductive liquids

05/09/2006 RAVI JETHRA



Volume measurement in desalination

- Full desalination requires the production of pure water necessary for the operation of steam boilers
- Volumetric flow meters are required for the measuring of deionized water in the water/steam circuit

Vortex flow meter

Prowirl

- Alternative to dp-flow with orifice plates
- Compact device for volume measurement in deionized water
- Reliable measurement independent of deionate conductivity
- Large measuring dynamics, i.e. high turndown
- Little Pressure loss

Ultrasonic: outlet water

Other info:

Traditionally, a large diameter magnetic Flow meter was used in this application. During a failure, it was not accessible for Replace or repair. A non-intrusive Prosonic 93 W unit was used temporarily. It became A permanent meter with more than \$10K Price difference between magnetic flow and Ultrasonic.

Effluent

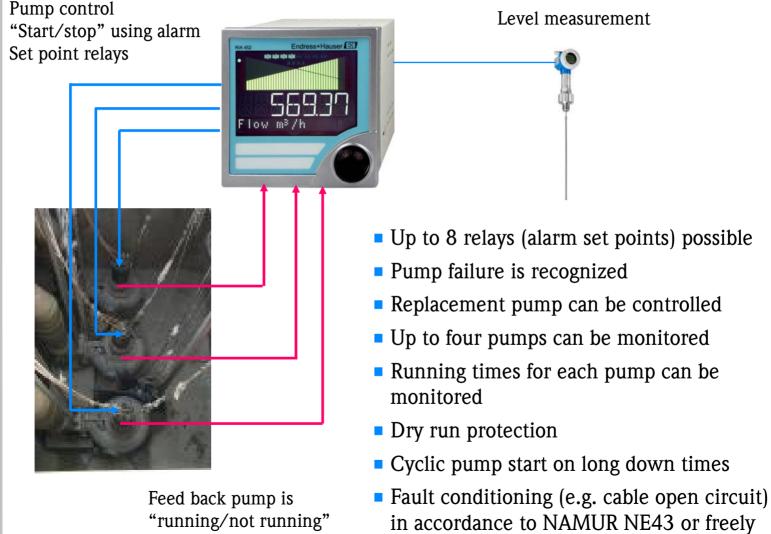
Ultrasonic Flowmeter

Type:Prosonic Flow93WMedia:Factory outlet water

05/09/2006 RAVI JETHRA

Level Applications - Capacitance / Radar

- Air/Ignition System
 - Fuel Oil Storage Level
- Environmental System : Ash levels inside precipitator
- Steam Generation : Dearator water storage level
- Steam System : Hotwell Condenser level
- Water System : Makeup water system supply


Level Applications

- Coal System : Storage pile, Conveyor control, coal silos
- Environmental System : Scrubber lime slurry, fly ash storage
- Water System : Pond/River level treatment plant cooling tower
- All rotating equipment needs lubrication to avoid excess friction and damage. Lubrication systems typically include a reservoir which must be monitored for loss of lubrication and lube oil pressure. (Point Level Switch i.e., Liquiphant)

RIA452– Level/Pump control


definable.

05/09/2006 **RAVI JETHRA**

"running/not running" using a digital signal

Level: Hydraulic oil tank

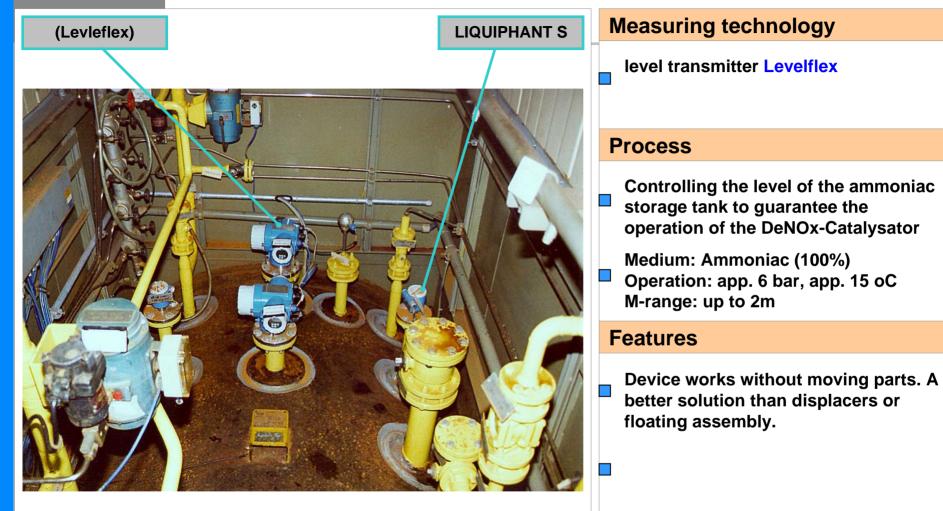
Other

Pressure / Level Measurement

Type: Media: **Delta Pilot DB 50S** Hydraulic oil

Other info: Deltapilot S is used to mea

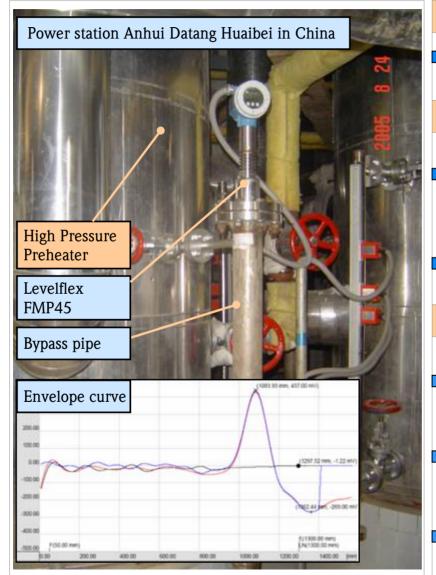
Deltapilot S is used to measure hydraulic oil in utility storage tanks. Deltapilot uses a flush mount weld socket and Hastelloy diaphragm.


Pro&Ind Industries

F1

Coal fired power plant Mellon ElC Seminar July 8, 2007

Controlling the level in the ammonia storage tank



RAVI JETHRA

Level measurement with radar technology Application in power plant => example High Pressure preheater

Measuring technology

Level transmitter LEVELFLEX FMP45 – Installation bypass at HP Preheater

Process

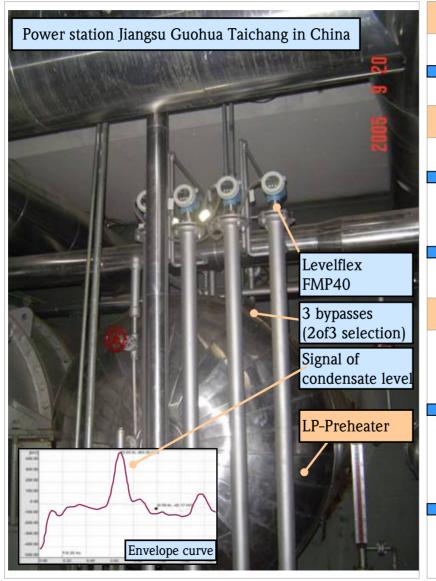
Level measurement of the condensed extraction steam (auxiliary condensate) in the High Pressure preheater.

Medium: Condensate (Demi-Water) Operation: 42,4 bar / 300 °C Measuring range: app. 1100 mm

Features

LEVELFEX is suited very well for high pressure and temperature parameters in High Pressure preheaters.

Analysis of the signal via the envelope curve of the transmitter, that can be viewed on the display or with a laptop.


The measurement is not influenced by fluctuations in the process or fluctuations in density. (pressure, temp.).

05/09/2006 RAVI JETHRA

Level measurement with radar technology Applications in the power plant => example Low Pressure preheater

Measuring technology

Level-transmitter (radar instrument) LEVELFLEX FMP40

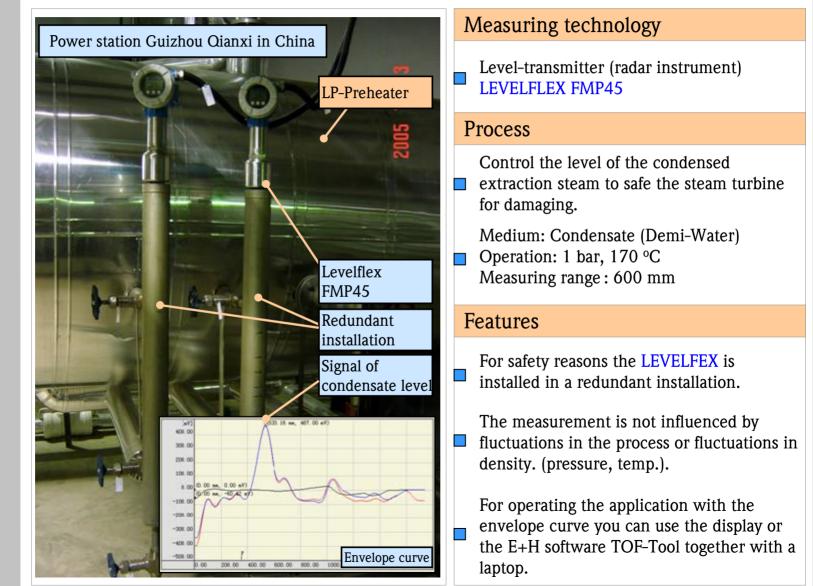
Process

Control the level of the condensed extraction steam to safe the steam turbine for damaging.

Medium: Condensate (Demi-Water) Operation: 7 bar, 180 °C Measuring range : 2100 mm

Features

LEVELFEX is installed in a redundant installation with three bypasses (2 of 3 selection) to realize the safety concept of the power station.


The measurement is not influenced by fluctuations in the process or fluctuations in density. (pressure, temp.).

05/09/2006 RAVI JETHRA

Level measurement with radar technology Applications in the power plant => example Low Pressure preheater

Levelflex - Fly Ash Measurement

Levelflex on Fly Ash Bins

Replacement of a plum-bob (mechanical) device

Fly Ash silo

- Measurement range: approx. 100ft
- Fly Ash build up does not disturb the measurement
- Previously used mechanical
 Plum-bob instrument
 failed due to cable breaking

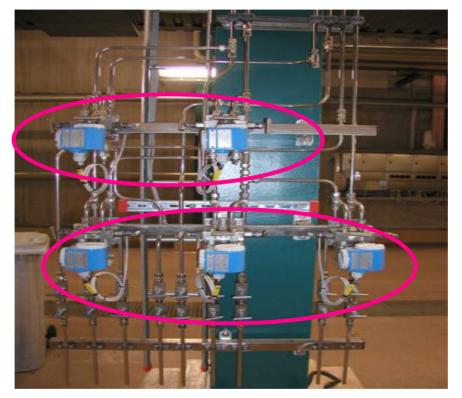
05/09/2006 RAVI JETHRA

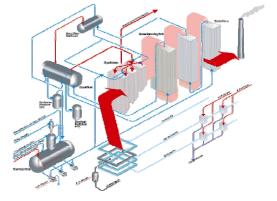
SC 0106

Endress+Hauser

Soliphant - Solid/Liquid Interface Module

Soliphant Interface Module in a Fly Ash De-Watering Bin SC 0108 Replacement of a mechanical rotating paddle switches


- Coal fired power plant.
- Soliphant detects the rising level of fly ash under water
- Soliphant II FTM30/31 solids / liquids interface module (#TSP9266)


Level: Water level in the boiler (safety circuit)

Other info: Standard and simple DP level measurement integrated into the boiler for level /pressure measurement to ensure safety. 2000PSI overpressure rating standard with HISTOROM event recording capability.

Pressure/Level measurement

Туре:	PMD75 with 3-valve
	manifolds
Media:	Water level
Pressure:	0-509,5 kPa/ 0-75 PSI

05/09/2006 RAVI JETHRA

Endress+Hauser 🖽

SC 0127

Ultrasonic – Pond Level Measurement

Potable water level measurement in large ponds Solar charged battery powered instruments

- FMU41 (battery powered)
- installed in 4" PVC stilling wel
- Pond size: 40 500 Acres
- Measurement cycle
 - FMU41 is powered up for 2 min. 4 x per hour
 - the reading is taken into SCADA system
 - the unit is powered back off

05/09/2006 RAVI JETHRA

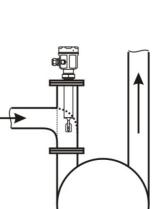
SC 0136

Levelflex Remote Housing – Displacer Replacer

FMP40 for High Temperature Application Replacement of Displacer Level Instrument

- FMP40 + remote housing
- Temperature
 - 167°C (333°F) operating temp
 - 249°C (480°F) max temp
- Pressure: Ambient to 1 bar
- Measuring range: 76"

05/09/2006 RAVI JETHRA

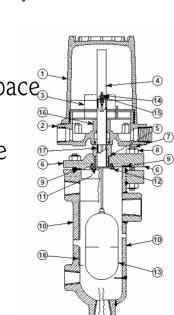


Liquiphant – PD Pump Protection

Liquiphant for empty pipe detection PD pump protection from running dry

- Empty pipe detection
- Prevents PD pumps
 (Positive Displacement Pump)
 from running dry
- Saves repair costs
 (\$1,500 \$2,000)
 and prevents from
 purchase of new pump
 (\$4,500)

SC 0103

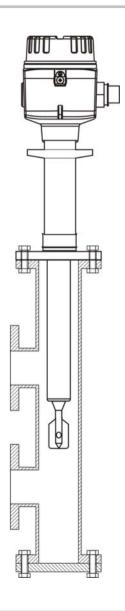


Float Chambers in Power Plants

Float switches + Chambers

- corrode + sink or stick
- need maintenance
- do not fit to any installation position
- need more space
- are expensive

Endress+Hauser



Endress+Hauser 🖽

Replacement of Float Switches

Replacement of high temperature float switches with Liquiphant

- 23 Liquiphant M + Liquiphant (HT) in an old power plant
- Bypass provided to get rid of expensive float chambers

WATER TREATMENT CONTROL ROOM WITH REMOTE DISPLAYS INSTALLED

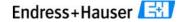
05/09/2006 RAVI JETHRA

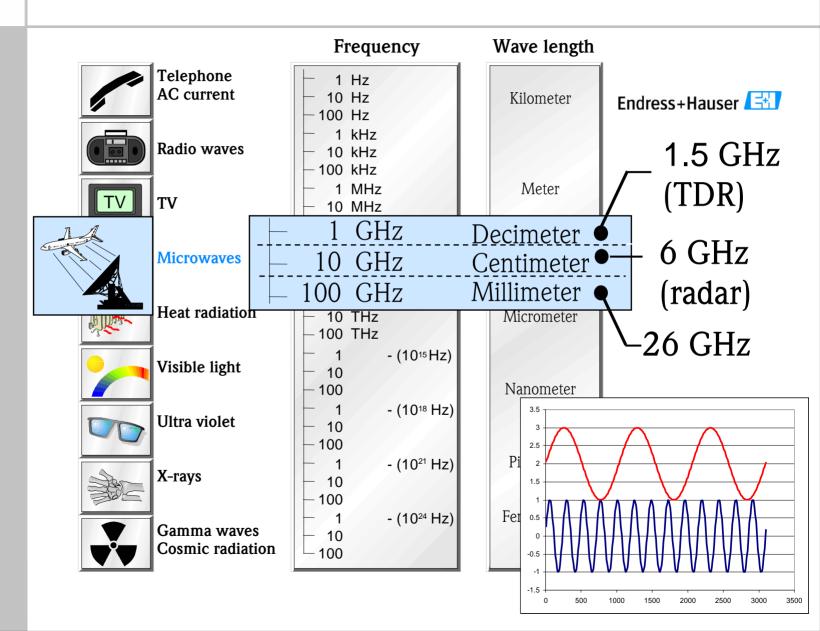
Microwave Energy

Effects on humans?

Inside: appr. 1 W/cm² Leakage with door closed: appr. 0.005 W/cm²

Endress+Hauser


With transmitting power of 2 W: ca. 0.000'1 W/cm²


Pulse: appr. 0.000'15 W/cm² Average: appr. 0.000'000'21 W/cm²

Electromagnetic Waves

05/09/2006 RAVI JETHRA

Power plant in the USA

05/09/2006 RAVI JETHRA Free space radar shooting through a grid on coal in a bunker Distance is 62 ft.

Endress+Hauser

DP or Vortex?

Similar Operational Concept

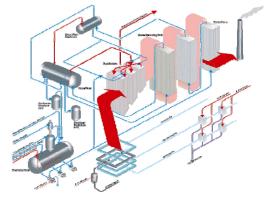
- Better long-term stability (less subject to wear) than orifice
- Calibrated, not only calculated
- Low installation costs
- Low maintenance requirements
- Higher turndown
- Lower pressure drop
- Fewer emission points
- Primarily linear signal
- Direct measurement
- Robust against changing T and p
 - Non-clogging (E+H)

- Installed base, widely accepted
- Standardized since 1929
- More DN/PN available
- Availabe for T>450°C
- More special materials
- Measures down to 0 (however with 0 accuracy...)
- Works at lower Reynolds #
- Attractive Pricing for bigger DN
- Faster Response Time

05/09/2006 RAVI JETHRA

Endress+Hauser 🖽

Pressure: Gas pressure in burning process

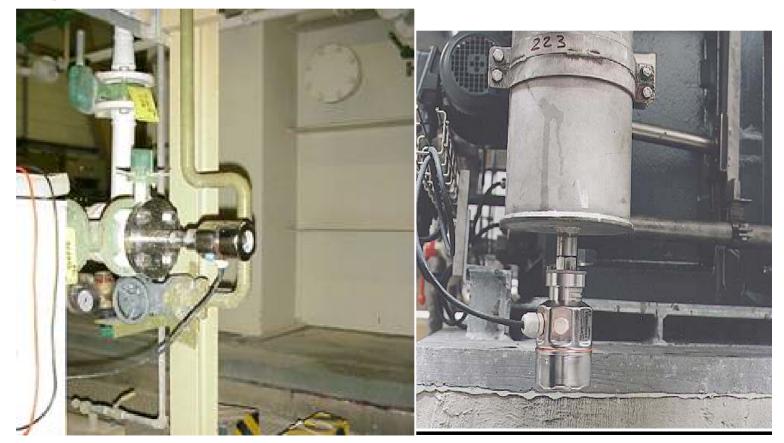

Chemical Recovery

Pressure measurement

Туре:	PMP 631 with 2-valve
	manifolds
Media:	Propane, Air
Temp:	+200-250 C/390-480F
Pressure:	10-12 bar/ 145-175 PSI

Other info: Direct Measurement of gases at the boiler reduces error with capillary tubes, leak points with "plugged" ports, and minimize error with density factor adjustment for individual gases.

Pressure Applications


- Air /Ignition System : Fuel Cutoff (shutdown), Fan Performance, Fuel flow between pulverizers and burners, air pre-heater and ignitors
- Steam Generation : Boiler Alarm, Water flowing from hotwell condensor, supply pump performance and steam lines in and out of drum, feedwater heaters and steam drum
- Steam System : Steam drum to superheaters, main steam line to turbine, cold and hot reheat steam lines, steam turbine throttle valve position
- Water System : Pump Monitoring



- Application examples

Power plant Pressure measurement in de-sulphurization process Utilities Level measurement in the gear box of a cooling tower fan

Level Applications

With impulse piping and condensate chamber for liquids with condensing vapours

$$\mathbf{Dp} = (\mathbf{\rho} \cdot \mathbf{g} \cdot (\mathbf{h} + \mathbf{h}_{b}) + \mathbf{p}_{head}) - (\mathbf{\rho}_{c} \cdot \mathbf{g} \cdot \mathbf{h}_{c} - \mathbf{p}_{head})$$

al fied power plant Mellon EIC Seminar July18, 2007 Coal fired power plant

Product matrix

	pressure level										flow				analysis						R
	process pressure (rel./abs.)	differential pressure	capacitive	vibronics (liquids)	vibronics (solids)	radiometrics	guided microimpulse	ultrasonics	electromechanical systems	microwave	electromagnetic	vortex	ultrasonics	massmeter	conductivity	pH-value	turbidity	sludge measurement	oxygen	temperature	data acquisition
coal supply																					
oil supply																					
ash removal/slag removal																					
gypsum processing																					
raw water supply																					
full desalination																					
waste water treatment																					
steam generator (main firing)																					
detoxification (DeNOx)																					
dust removal (electrofilter)																					
fluegas desulpherisation																					
water/steam-circuit																					
steam turbine																					
generator																					
main cooling water system																					<u> </u>

RAVI JETHRA

Product Matrix

	Pres	sure	Leve	el							Flow	1			Anal	ysis			Т
	Pressure (relative, absolute)	Differential Pressure	Capacitance	Vibration (Liquids)	Vibration (Solids)	Radiometric	Guided Microimpulse	Ultrasonic	Electromechanical System	Radar	Electromagnetic	Vortex principle	Ultrasonic	Mass flowmeter	Conductivity	На	Turbidity	Oygen	Temperature
Natural gas supply																			
Water supply																			
Desalination																			
Heat recovery steam generator																			
Water-/Steam system																			
Steam turbine																			
Gas turbine																			
Generator																			
External energy supply																			
Cooling system																		I	

RAVI JETHRA

Carnegie Mellon EIC Seminar July18, 2007 Endress+Hauser Any questions?

05/09/2006 RAVI JETHRA