Subha R. Das
Associate Professor, Chemistry
- Mellon Institute 740A
- 412-268-6871
Education
Ph.D., Auburn University, 2000M.S.C., Chemistry, BITS, Pilani (India), 1994
B.E., Computer Science BITS, Pilani (India), 1994
Research
Keywords: Organic Chemistry, Nucleic acids (DNA and RNA) Chemistry and Biochemistry, Nucleic Acids Polymer Hybrids, Biomaterials, Nanobiotechnology, Automated Science
ResearcherID: H-4733-2014
Projects
Nucleic Acids POLymer hybrids Nano-biotechnology
Backbone branched DNA provides a simple and powerful avenue to engineer precisely the angles between DNA helices in self-assembled DNA nanostructures. We are exploring the design and construction of nanoscale DNA objects that have been inaccessible by traditional DNA nanotechnologies. Our ability to synthesize and functionalize DNA provides additional opportunities to enhance the function of these objects by incorporating metal or polymer nanoparticles or biomolecules. Polymer DNA hybrids synergistically capitalize on the power of polymeric materials with the tunable hybridization and reversible assembly properties of DNA.
Nucleic Acids modifications for exosome engineering
We have recently introduced "click-chemistry" for labeling or ligating RNA. Any RNA – not just synthetic RNA – can be labeled with another molecule or ligated to another RNA for the detection, handling or delivery or RNA. This powerful chemical tools enables a number of projects. One current project in this area seeks to label cellular RNA with different markers through which altered states or transport of the RNAs due to different environmental or epigenetic factors can be investigated.
Remote automated science in the cloud lab
Backbone Branched RNAs
The process of splicing generates the correct messenger RNA for the cellular synthesis of proteins by removing non-coding intron sequences as 'lariats'. These lariat RNAs have a branched structure and have been long desired in order to investigate splicing and related processes. We have accomplished the synthesis of backbone branched RNAs and these provide a unique opportunity to investigate splicing and related processes such as debranching through biochemical assays and biophysical methods such as single-molecule spectroscopy.
Science Education and Communication
The Kitchen Chemistry Sessions course uses food and molecular cuisine to teach the concepts of chemistry and science. The use of food ingredients and their preparation in laboratory settings are based on the molecular properties. Modules based on water, fats/oils and lipids, carbohydrates, proteins and aroma volatiles and flavor compounds provide a context to highlight how chemical and scientific principles permeate students’ everyday life chemical concepts to a wide audience – from K-12 to non-science majors. Science majors are engaged with the cooking focus that serves to reinforce, re-organize, and extend students’ knowledge of chemistry and biochemistry. The food context also provides a significant opportunity to communicate and promote science concepts to the public. See Chemistry in the Kitchen (Pittsburgh Post-Gazette, Nov 4, 2010) and Carnegie Mellon's Kitchen Chemistry Course Makes Science Palatable (University Press Release, March 25, 2010) for more information.
Publications
Nucleic Acid-Binding Dyes as Versatile Photocatalysts for Atom-Transfer Radical Polymerization
Jeong, J.; Hu, X.; Yin, R.; Fantin, M.; Das, S.; Matyjaszewski, K. Journal of the American Chemical Society 146 19 13598–606. 10.1021/jacs.4c03513. 2024
Expanding the Architectural Horizon of Nucleic-Acid-Polymer Biohybrids by Site-Controlled Incorporation of ATRP Initiators in DNA and RNA
Jeong, J.; Szczepaniak, G.; Das, S.; Matyjaszewski, K. Chem 9 11 3319–34. 10.1016/j.chempr.2023.07.013. 2023
Biomass RNA for the Controlled Synthesis of Degradable Networks by Radical Polymerization
Jeong, J.; An, S.; Hu, X,; Zhao, Y.; Yin, R.; Szczepaniak, G.; Murata, H.; Das, S.; Matyjaszewski, K. ACS Nano 17, 21 21912–22. 10.1021/acsnano.3c08244 2023
RNA-Polymer Hybrids via Direct and Site-Selective Acylation with the ATRP Initiator and Photoinduced Polymerization
Jeong, J.; Hu, X.; Murata, H.; Szczepaniak, G.; Rachwalak, M.; Kietrys, A.; Das, S.; Matyjaszewski, K. Journal of the American Chemical Society 145 26 14435–45. 10.1021/jacs.3c03757. 2023
Biocompatible Photoinduced CuAAC Using Sodium Pyruvate
Jeong, J.; Szczepaniak, G.; Yerneni, S. S.; Lorandi, F.; Jafari, H.; Lathwal, S.; Das, S. R.; Matyjaszewski, K. Chem. Commun. 57 (95), 12844–12847. DOI: 10.1039/D1CC05566F 2021
Engineering Exosome Polymer Hybrids by Atom Transfer Radical Polymerization
Lathwal, S.; Yerneni, S. S.; Boye, S.; Muza, U. L.; Takahashi, S.; Sugimoto, N.; Lederer, A.; Das, S. R.; Campbell, P. G.; Matyjaszewski, K. Proc. Natl. Acad. Sci. 118 (2), e2020241118. DOI: 10.1073/pnas.2020241118 2021
Capturing the Mechanism Underlying TOP mRNA Binding to LARP1
Cassidy, K. C.; Lahr, R. M.; Kaminsky, J. C.; Mack, S.; Fonseca, B. D.; Das, S. R.; Berman, A. J.; Durrant, J. D. Structure 27 (12), 1771–1781.e5 2019
Atom Transfer Radical Polymerization for Biorelated Hybrid Materials
Baker, S. L.; Kaupbayeva, B.; Lathwal, S.; Das, S. R.; Russell, A. J.; Matyjaszewski, K. Biomacromolecules 20 (12), 4272–4298 2019
Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers
Yerneni, S. S.; Lathwal, S.; Shrestha, P.; Shirwan, H.; Matyjaszewski, K.; Weiss, L.; Yolcu, E. S.; Campbell, P. G.; Das, S. R. ACS Nano 13 (9), 10555–10565 2019
Preparation of Well-Defined Polymers and DNA–Polymer Bioconjugates via Small-Volume eATRP in the Presence of Air
Sun, Y.; Lathwal, S.; Wang, Y.; Fu, L.; Olszewski, M.; Fantin, M.; Enciso, A. E.; Szczepaniak, G.; Das, S.; Matyjaszewski, K. ACS Macro Lett. 603–609 2019
Biocatalytic “Oxygen‐Fueled” Atom Transfer Radical Polymerization
Enciso, A.E., Fu, L., Lathwal, S., Olszewski, M., Wang,Z., Das,S.R., Russell,A.J. and Matyjaszewski, K. Angew. Chemie Int. Ed. 57, 16157–16161 2018
Accessibility of Densely Localized DNA on Soft Polymer Nanoparticles
Fouz,M.F., Dey,S.K., Mukumoto,K., Matyjaszewski,K., Armitage, B.A. and Das, S.R. Langmuir 34, 14731–14737 2018
Eliminating Spurious Zero-Efficiency FRET States in Diffusion-Based Single-Molecule Confocal Microscopy
Dey, S. K., Pettersson, J. R., Topacio, A. Z., Das, S. R., Peteanu, L. A. J. Phys. Chem. Lett. 9, 2259–2265 2018
Automated Synthesis of Well-Defined Polymers and Biohybrids by Atom Transfer Radical Polymerization Using a DNA Synthesizer
Pan, X., Lathwal, S., Mack, S., Yan, J.. Das, S.R., Matyjaszewski, K., Angew. Chemie Int. Ed. 56, 2740–2743 2017
Crystal structure of the Entamoeba histolytica RNA lariat debranching enzyme EhDbr1 reveals a catalytic Zn2+/Mn2+heterobinucleation
Ransey, E., Paredes, E., Dey, S. K., Das, S. R., Heroux, A. and Macbeth, M. R., FEBS Lett 591, 2003–2010. doi:10.1002/1873-3468.12677 2017
Pseudo-ligandless Click Chemistry for Oligonucleotide Conjugation
Mack, S.; Fouz, M.; Dey, S.K.; Das, S.R. Curr. Protoc. Chem. Biol. 8, 83–95 2016
Bright Fluorescent Nanotags from Bottlebrush Polymers with DNA-Tipped Bristles
Fouz, M.F.; Mukumoto, K.; Averick, S.; Molinar, O.; McCartney, B.M.; Matyjaszewski, K.; Armitage, B.A.; Das, S.R., ACS Cent. Sci. 1, 431–438 2015
Transition State Features in the Hepatitis Delta Virus Ribozyme Reaction Revealed by Atomic Perturbations
Koo, S.C.; Lu, J.; Li, N.-S.; Leung, E.; Das, S.R.; Harris, M.E.; Piccirilli, J.A., J. Am. Chem. Soc. 137, 8973–8982 2015
Well-defined biohybrids using reversible-deactivation radical polymerization procedures
Averick, S., Mehl, R. A., Das, S. R. & Matyjaszewski, K., J. Control. Release 205, 45–57 2015
Solid Phase Incorporation of an ATRP Initiator for Polymer-DNA Biohybrids
Averick, S. E.; Dey, S. K.; Grahacharya, D.; Matyjaszewski, K.; Das, S. R., Angewandte Chemie Intl Ed. 53, 2739 – 2744 doi: 10.1002/anie.201308686 2014
Auto-transfecting siRNA through Facile Covalent Polymer Escorts
Averick, S. E.; Paredes, E.; Dey, S. K.; Snyder, K. M.; Tapinos, N.; Matyjaszewski, K.; Das, S. R., J Am Chem Soc 135, 12508–12511 doi: 10.1021/ja404520j 2013
The Kitchen Chemistry Sessions : Palatable Chemistry through Molecular Gastronomy and Cuisine. In Using Food to Stimulate Interest in the Chemistry Classroom
Das, S. R.; Symox, K., Ed.; American Chemical Society: Washington, DC doi: 10.1021/bk-2013-1130.ch007 2013
RNA Conjugations and Ligations for RNA Nanotechnology
Paredes, E.; Das, S. R.; In RNA Nanotechnology and Therapeutics; Guo, P.; Haque, F., Eds.; CRC Press 197–211 2013
Star Polymers with a Cationic Core Prepared by ATRP for Cellular Nucleic Acids Delivery
Cho, H. Y.; Averick, S. E.; Paredes, E.; Wegner, K.; Averick, A.; Jurga, S.; Das, S. R.; Matyjaszewski, K.; Biomacromolecules 14, 1262–1267. doi: 10.1021/bm4003199 2013
Backbone-Branched DNA Building Blocks for Facile Angular Control in Nanostructures
Paredes, E.; Zhang, X.; Ghodke, H.; Yadavalli, V. K.; Das, S. R.; ACS Nano 7, 3953–3961. doi: 10.1021/nn305787m 2013
Appointments
2012–present | Associate Professor of Chemistry, Carnegie Mellon University |
2006–2012 | Assistant Professor of Chemistry, Carnegie Mellon University |
2000–2006 | Postdoctoral Research Associate, Howard Hughes Medical Institute, The University of Chicago |