The Power of Small Scales to Probe Inflation

Adrienne Erickcek CITA Perimeter Institute

CMU Cosmic Acceleration Workshop August 25, 2012

Several inflationary models predict excess small-scale power.

Cosmic Acceleration: CMU August 25, 2012

 Several inflationary models predict excess small-scale power.
 inflaton interactions: particle production or coupling to gauge fields Chung+ 2000; Barnaby+ 2009,2010; Barnaby+ 2011

- multi-stage and multi-field inflation with bends in inflaton trajectory Silk & Turner 1987; Adams+1997; Achucarro+ 2012
- any theory with a potential that gets flatter: running mass inflation

Stewart 1997; Covi+1999; Covi & Lyth 1999 hybrid models that use a "waterfall" field to end inflation Lyth 2011; Gong & Sasaki 2011; Bugaev & Klimai 2011

 Several inflationary models predict excess small-scale power.
 inflaton interactions: particle production or coupling to gauge fields Chung+ 2000; Barnaby+ 2009,2010; Barnaby+ 2011

- multi-stage and multi-field inflation with bends in inflaton trajectory Silk & Turner 1987; Adams+1997; Achucarro+ 2012
- any theory with a potential that gets flatter: running mass inflation

Stewart 1997; Covi+1999; Covi & Lyth 1999 hybrid models that use a "waterfall" field to end inflation Lyth 2011; Gong & Sasaki 2011; Bugaev & Klimai 2011

 Several inflationary models predict excess small-scale power.
 inflaton interactions: particle production or coupling to gauge fields Chung+ 2000; Barnaby+ 2009,2010; Barnaby+ 2011

- multi-stage and multi-field inflation with bends in inflaton trajectory Silk & Turner 1987; Adams+1997; Achucarro+ 2012
- any theory with a potential that gets flatter: running mass inflation

Stewart 1997; Covi+1999; Covi & Lyth 1999
 hybrid models that use a "waterfall" field to end inflation
 Lyth 2011; Gong & Sasaki 2011; Bugaev & Klimai 2011

Several inflationary models predict excess small-scale power. Inflator interactions: particle production or coupling to gauge fields Chung+ 2000; Barnaby+ 2009,2010; Barnaby+ 2011

- multi-stage and multi-field inflation with bends in inflaton trajectory Silk & Turner 1987; Adams+1997; Achucarro+ 2012
- any theory with a potential that gets flatter: running mass inflation

Stewart 1997; Covi+1999; Covi & Lyth 1999 hybrid models that use a "waterfall" field to end inflation Lyth 2011; Gong & Sasaki 2011; Bugaev & Klimai 2011

2

Adrienne Erickcek

Outline

- Part I: What can small scales tell us about reheating? Collaborators: Kris Sigurdson (UBC)
- Part II: Probing small scales with astrometric lensing by UCMHs Collaborators: Fangda Li (UT undergrad) & Nicholas Law (DI Fellow)
- Part III: Probing small scales with CMB spectral distortions Collaborators: Jens Chluba (CITA) & Ido Ben-Dayan (CITA/PI)

What Happened Before BBN?

- The (mostly) successful prediction of the primordial abundances of light elements is one of cosmology's crowning achievements.
- The elements produced during Big Bang Nucleosynthesis are our first window on the Universe.
- •They tell us that the Universe was radiation dominated during BBN.
- But we have good reasons to think that the Universe was not radiation dominated before BBN!
- Primordial density fluctuations point to inflation.
- During inflation, the Universe was scalar dominated.
- Other scalar fields may dominate the Universe after the inflaton decays.
- The string moduli problem: scalars with gravitational couplings come to dominate the Universe before BBN.

Carlos, Casas, Quevedo, Roulet 1993 Banks, Kaplan, Nelson 1994 Acharya, Kane, Kuflik 2010

Scalar Domination after Inflation

The Universe was once dominated by an oscillating scalar field.

- reheating after inflation
- Curvaton domination
- string moduli
- Scalar domination ended when the
- scalar decayed into radiation, reheating
- the Universe.
 - assume perturbative decay; requires small decay rate
 - scalar decays can also produce dark matter
 - scalar decays can also produce dark matter Ichikawa, Kawasaki, Takahashi 2005; 2007; • unknown reheat temperature: $T_{\rm RH} \gtrsim 3 {
 m MeV}$ de Bernardis, Pagano, Melchiorri 2008
- For $V \propto \phi^2$, oscillating scalar field \simeq matter.
 - over many oscillations, average pressure is zero.
 density in scalar field evolves as \$\rho_{\phi} \propto a^{-3}\$
 scalar field density perturbations grow as \$\delta_{\phi} \propto a\$

Jedamzik, Lemoine, Martin 2010; Easther, Flauger, Gilmore 2010

 (ϕ)

What happens to these perturbations after reheating?

Adrienne Erickcek

Microhalos from Reheating Erickcek & Sigurdson PRD 84,083503 (2011)

Reheating $T_{ m RH}\gtrsim 3~{ m MeV}$

Infla	Radiation Domination	Matter Domination	Λ
tion			

Perturbative Scalar Decay

Adrienne Erickcek

The Matter Perturbation

Scalar domination affects the growth of density fluctuations.

Evolution of the Matter Density Perturbation

The Matter Perturbation

The Matter Density Perturbation during Radiation Domination

$k_{\rm RH} = 35 \ (T_{\rm RH}/3 \,{ m MeV}) \ { m kpc}^{-1}$ Wavenumber of mode that enters horizon at reheating

RMS Density Fluctuation

Microhalos at High Redshift

We used the Press-Schechter mass function to calculate the fraction of dark matter contained in halos of mass M.

Microhalos at High Redshift

We used the Press-Schechter mass function to calculate the fraction of dark matter contained in halos of mass M.

Adrienne Erickcek

Detection Prospects

The only guaranteed signatures are gravitational.

Astrometric Microlensing
Pulsar Timing Residuals
Photometric Microlensing

ALE & Law 2011; Li, ALE & Law 2012 Baghram, Afshordi, Zurek 2011 Ricotti & Gould 2009

If dark matter self-annihilates...

Adrienne Erickcek

Part II Ultracompact Minihalos and the Primordial Power Spectrum Li, Erickcek & Law PRD 86 043519 (2012)

> Fangda Li U of Toronto 3rd year undergrad

UCMH=Ultra-Compact Mini-Halo

- If a region enters the cosmological horizon with an overdensity $\delta \gtrsim 10^{-3}$ the dark matter in this region collapses prior to $z \sim 1000$ and forms an UCMH.
- •much lower overdensity than required to form a primordial black hole
- if dark matter self-annihilates, these UCMHs are gamma-ray sources Scott & Sivertsson 2009
 the absence of UCMHs constrains the amplitude of the primordial power Josan & Green 2010
 Bringmann, Scott, Akrami 2011

UCMH=Ultra-Compact Mini-Halo

If a region enters the cosmological horizon with an overdensity $\delta \gtrsim 10^{-3}$ the dark matter in this region collapses prior to $z \sim 1000$ and forms an UCMH.

• much lower overdensity than required to form a primordial black hole

If dark matter self-annihilates, these UCMHs are gamma-ray sources

UCMH=Ultra-Compact Mini-Halo

If a region enters the cosmological horizon with an overdensity $\delta \gtrsim 10^{-3}$ the dark matter in this region collapses prior to $z \sim 1000$ and forms an UCMH.

• much lower overdensity than required to form a primordial black hole

If dark matter self-annihilates, these UCMHs are gamma-ray sources

Astrometric Microlensing by UCMHs

Adrienne Erickcek

Cosmic Acceleration: CMU August 25, 2012

Probing the Primordial Perturbations

- Gaia is an ESO satellite scheduled to launch next year.
 astrometric precision per epoch: ~29 microarcseconds for its brightest targets (~7 million stars)
- If Gaia doesn't detect microlensing by UCMHs,
- upper bound on number density of UCMHs
- upper bound on the amplitude of small-scale density fluctuations

Probing the Primordial Perturbations

Gaia is an ESO satellite scheduled to launch next year.
astrometric precision per epoch: ~29 microarcseconds for its brightest targets (~7 million stars)

If Gaia doesn't detect microlensing by UCMHs, • upper bound on number density of UCMHs

• upper bound on the amplitude of small-scale density fluctuations

Most conservative case: Fermi gives a stronger bound if DM self-annihilation diminishes lensing signal.

Adrienne Erickcek

Probing the Primordial Perturbations

Gaia is an ESO satellite scheduled to launch next year.
astrometric precision per epoch: ~29 microarcseconds for its brightest targets (~7 million stars)

If Gaia doesn't detect microlensing by UCMHs,
upper bound on number density of UCMHs

• upper bound on the amplitude of small-scale density fluctuations

Most conservative case: Fermi gives a stronger bound if DM self-annihilation diminishes lensing signal.

Adrienne Erickcek

Part III Probing the Primordial Power Spectrum with CMB Spectral Distortions Chluba, Erickcek & Ben-Dayan 1203.2681

Spectral Distortions from Diffusion

Spectral Distortions from Diffusion

Adrienne Erickcek

Spectral Distortions from Diffusion

Energy released when $k \simeq k_D(z) \simeq 4 \times 10^6 (1+z)^{3/2} \, {\rm Mpc}^{-1}$

 $\bullet\, {\rm Modes}$ with $50\,{\rm Mpc}^{-1} \lesssim k \lesssim 10^4\,{\rm Mpc}^{-1}$ generate $\mu {\rm -distortions}$

• Modes with $k \lesssim 50 \, {
m Mpc}^{-1}$ dissipate at $z \lesssim 5 \times 10^4$, generating y-distortions Spectral distortions yield an integral constraint on the

primordial power spectrum:

$$\mu \approx 2.2 \int_{k_{\min}}^{\infty} \mathcal{P}_{\zeta}(k) \left[\exp\left(-\frac{k \operatorname{Mpc}}{5400}\right) - \exp\left(-\left[\frac{k \operatorname{Mpc}}{31.6}\right]^{2}\right) \right] \mathrm{d}\ln k$$
$$y \approx 0.4 \int_{k_{\min}=1 \operatorname{Mpc}^{-1}}^{\infty} \mathcal{P}_{\zeta}(k) \exp\left(-\left[\frac{k \operatorname{Mpc}}{31.6}\right]^{2}\right) \mathrm{d}\ln k$$

Adrienne Erickcek

Constraining Inflation

Comparison to bounds from PBHs and UCMHs

- assume "local scale invariance"
- apply the same minimal assumption when computing bounds from spectral distortions

Constraining Inflation

Adrienne Erickcek

Cosmic Acceleration: CMU August 25, 2012

Constraining Inflation

Adrienne Erickcek

Cosmic Acceleration: CMU August 25, 2012

Summary: Small Scales Probe the EU

- Part I: An early "matter" dominated era can produce numerous AE & Sigurdson PRD 84, 083503 (2011)
- Part II: Astrometric microlensing by UCMHs: using Gaia,
constrain $\mathcal{P}_{\mathcal{R}}(k \simeq 2700 \,\mathrm{Mpc}^{-1}) \lesssim 10^{-5}$ Li, AE & Law PRD 86, 043519
(2012)Part III: Constrain $1 \,\mathrm{Mpc}^{-1} \lesssim k \lesssim 10^4 \,\mathrm{Mpc}^{-1}$ with CMB spectral
Chluba, AE & Ben-Dayan arXiv: 1203.2681, to appear in ApJ

Adrienne Erickcek