A Proxy for Massive Gravity

Lavinia Heisenberg

Université de Genève, Genève Case Western Reserve University, Cleveland

August 24th, Carnegie Mellon University, Pittsburgh

"The Universe never did make sense; I suspect it was built on government contract". (Robert A. Heinlein)

Lavinia Heisenberg

DL

Proxy theory

What is Dark Energy?

3 options?

- Cosmological Constant (Why is it so small?) → cosmological constant problem?
- Dark Energy (Why don't we see them? Similar fine-tuning problem?)
- Modified gravity

 (Is there any viable model?)
 → massive gravity?

Lavinia Heisenberg

Motivations for IR Modification of GR

- a very nice alternative to the CC or dark energy for explaining the recent acceleration of the Hubble expansion
- a way of attacking the Cosmological Constant problem (fine-tuning problem)

$$\Lambda_{\rm obs}=\Lambda_{\rm bare}+\Delta\Lambda\sim(10^{-3}{\rm eV})^4$$
 with $\Delta\Lambda\sim{\rm TeV^4}$

• fun!

Introduction dBGT DL Conclusion Proxy theory **Modified Gravity** Let's concentrate on the third option: Modifying gravity

Maybe not modifying that much! only close to the horizon scale $(\sim 1 \text{Gpc}/h)$, corresponding to modifying gravity today (low energy scales).

Lavinia Heisenberg

IntroductiondRGTDLProxy theoryConclusionNew degrees of freedom (dof) in the infra-red (IR)Modifying gravity in the IR typically requires new dof
usually: scalar field

 $\mathcal{L} = -\frac{1}{2} \mathcal{Z}_{\phi} (\partial \delta \phi)^2 - \frac{1}{2} m_{\phi}^2 (\delta \phi)^2 - g_{\phi} \delta \phi T$ where these quantities $\mathcal{Z}_{\phi}, m_{\phi}, g_{\phi}$ depend on the field.

Density dependent mass

 Chameleon m_φ depends on the environment (Khoury, Weltman 2004)

Lavinia Heisenberg

Density dependent coupling

- Vainshtein (1971) \mathcal{Z}_{ϕ} depends on the environment
- Symmetron g_φ depends on the environment (Hinterbichler, Khoury 2010)

Proxy theory

Ghost-free extension of FP = dRGT

a 4D covariant theory of a massive spin-2 field

$$\mathcal{L} = rac{M_p^2}{2} \sqrt{-g} \left(R - rac{m^2}{4} \mathcal{U}(g, H)
ight)$$

dRGT

the most generic potential that bears no ghosts is $U(g, H) = -4 (U_2 + \alpha_3 U_3 + \alpha_4 U_4)$ where the covariant tensor $H_{\mu\nu} = h_{\mu\nu} + 2\Phi_{\mu\nu} - \eta^{\alpha\beta}\Phi_{\mu\alpha}\Phi_{\beta\nu}$ and the potentials:

DI

$$\begin{aligned} \mathcal{U}_2 &= [\mathcal{K}]^2 - [\mathcal{K}^2] \\ \mathcal{U}_3 &= [\mathcal{K}]^3 - 3[\mathcal{K}][\mathcal{K}^2] + 2[\mathcal{K}^3] \\ \mathcal{U}_4 &= [\mathcal{K}]^4 - 6[\mathcal{K}^2][\mathcal{K}]^2 + 8[\mathcal{K}^3][\mathcal{K}] + 3[\mathcal{K}^2]^2 - 6[\mathcal{K}^4] \end{aligned}$$

where $\mathcal{K}^{\mu}_{\nu}(g,H) = \delta^{\mu}_{\nu} - \sqrt{\delta^{\mu}_{\nu} - H^{\mu}_{\nu}}, \Phi_{\mu\nu} = \partial_{\mu}\partial_{\nu}\phi$ and [..] =trace. (de Rham, Gabadadze, Tolley (Phys.Rev.Lett.106,231101))

Lavinia Heisenberg

(DL)

Proxy theory

Decoupling limit (DL)

Decoupling limit $(M_p
ightarrow \infty, m
ightarrow 0$ with $\Lambda_3^3 = m^2 M_p
ightarrow$ const). and decomposition of $H_{\mu\nu}$ in terms of the canonically normalized helicity-2 and helicity-0 fields $H_{\mu\nu} = \frac{h_{\mu\nu}}{M_p} + \frac{2\partial_{\mu}\partial_{\nu}\phi}{\Lambda_3^2} - \frac{\partial_{\mu}\partial^{\alpha}\phi\partial_{\nu}\partial_{\alpha}\phi}{\Lambda_3^6}$ gives the following scalar-tensor interactions $\mathcal{L} = -rac{1}{2}h^{\mu
u}\mathcal{E}_{\mu
u}{}^{lphaeta}h_{lphaeta} + h^{\mu
u}\sum_{n=1}^{3}rac{a_n}{\Lambda^{3(n-1)}_{lpha}}X^{(n)}_{\mu
u}[\Phi]$ where $a_1=-rac{1}{2}$ and $a_{2,3}$ are two arbitrary constants and $X^{(1,2,3)}_{\mu
u}$ denote the interactions of the helicity-0 mode $X^{(1)}_{\mu\nu} = \Box \phi \eta_{\mu\nu} - \Phi_{\mu\nu}$ $X^{(2)}_{\mu\nu} = \Phi^2_{\mu\nu} - \Box \phi \Phi_{\mu\nu} - \frac{1}{2} ([\Phi^2] - [\Phi]^2) \eta_{\mu\nu}$ $X^{(3)}_{\mu\nu} = 6\Phi^3_{\mu\nu} - 6[\Phi]\Phi^2_{\mu\nu} + 3([\Phi]^2 - [\Phi^2])\Phi_{\mu\nu} - \eta_{\mu\nu}([\Phi]^3 - 3[\Phi^2][\Phi] + 2[\Phi^3])$

Lavinia Heisenberg

Diagonalized interactions

The transition to Einsteins frame is performed by the change of variable

DL

$$h_{\mu
u} = ar{h}_{\mu
u} - 2a_1\phi\eta_{\mu
u} + rac{2a_2}{\Lambda_2^3}\partial_\mu\phi\partial_
u\phi$$

one recovers Galileon interactions for the helicity-0 mode of the graviton

$$\mathcal{L} = -\frac{1}{2}\bar{h}(\mathcal{E}\bar{h})_{\mu\nu} + 6a_1^2\phi\Box\phi - \frac{6a_2a_1}{\Lambda_3^3}(\partial\phi)^2[\Phi] + \frac{2a_2^2}{\Lambda_3^6}(\partial\phi)^2([\Phi^2] - [\Phi]^2) + \frac{a_3}{\Lambda_3^6}h^{\mu\nu}X^{(3)}_{\mu\nu}$$

with the coupling

$$\frac{1}{M_p} \left(\bar{h}_{\mu\nu} - 2a_1 \phi \eta_{\mu\nu} + \frac{2a_2}{\Lambda_3^3} \partial_\mu \phi \partial_\nu \phi \right) T^{\mu\nu}$$

Lavinia Heisenberg

Differences to Galileon interactions

DL

Common

Lavinia Heisenberg

- IR modification of gravity as due to a light scalar field with non-linear derivative interactions
- respects the symmetry $\phi(x) \rightarrow \phi(x) + c + b_{\mu}x^{\mu}$
- Second order equations of motion, containing at most two time derivatives

Different

- undiagonazable interaction + $\frac{a_3}{\Lambda_5^6}h^{\mu\nu}X^{(3)}_{\mu\nu}$ \rightarrow important for the self-accelerating solution
- extra coupling ∂_μφ∂_νφT^{μν}
 → important for the
 degravitating solution
- only 2 free-parameters
- observational difference due to $\frac{a_3}{\Lambda_5^6} h^{\mu\nu} X^{(3)}_{\mu\nu}$ and $\partial_\mu \phi \partial_\nu \phi T^{\mu\nu}$

Introduction dRGT DL Proxy theory

Equation of motions

The equation of motions for the helicity-2 mode

$$-\mathcal{E}^{\alpha\beta}_{\mu\nu}h_{\alpha\beta} + \sum_{n=1}^{3} \frac{a_n}{\Lambda_3^{3(n-1)}} X^{(n)}_{\mu\nu}[\Phi] = -\frac{1}{M_p} T_{\mu\nu}$$

and for helicity-0 mode

$$\partial_{\alpha}\partial_{\beta}h^{\mu\nu}\left(a_{1}\epsilon_{\mu}^{\ \alpha\rho\sigma}\epsilon_{\nu\ \rho\sigma}^{\ \beta}+2\frac{a_{2}}{\Lambda_{3}^{3}}\epsilon_{\mu}^{\ \alpha\rho\sigma}\epsilon_{\nu\ \sigma}^{\ \beta\gamma}\Pi_{\rho\gamma}+3\frac{a_{3}}{\Lambda_{3}^{6}}\epsilon_{\mu}^{\ \alpha\rho\sigma}\epsilon_{\nu}^{\ \beta\gamma\delta}\Pi_{\rho\gamma}\Pi_{\sigma\delta}\right)$$

de Rham, Gabadadze, Heisenberg, Pirtskhalava (Phys. Rev. D 83, 103516)

 Gravitons form a condensate whose energy density sources self-acceleration

 Gravitons form a condensate whose energy density compensates the cosmological constant

Lavinia Heisenberg

Self-accelerating solution

$$H^2 = m^2 \left(2a_2q^2 + 2a_3q^3 - q
ight)$$
 and $q = -rac{a_2}{3a_3} + rac{(2a_2^2 + 3a_3)^{1/2}}{3\sqrt{2}a_3}$

DL

stability

- stable self-accelerating solution: $a_2 < 0$ and $\frac{-2a_2^2}{3} < a_3 < \frac{-a_2^2}{2}$
- h^{µν}X⁽³⁾_{µν} plays a crucial role for the stability (a₃ = 0 → ghost)
- kinetic term of the perturbation of the helicity-0 mode survives \rightarrow no strong coupling issues
- no quadratic mixing term between perturbations of the helicity-2 and helicity-0
- cosm. evolution very similar to ACDM Lavinia Heisenberg

DL

Degravitating solution

 degravitating solution: high pass filter modifying the effect of long wavelength sources such as a CC
 → vacuum energy gravitates very weakly

•
$$H = 0 \rightarrow g_{\mu\nu} = \eta_{\mu\nu}$$

• $a_1q + a_2q^2 + a^3q^3 = \frac{-\lambda}{\Lambda_3^3 M_p}$ as long as the parameter a_3 is present, this equation has always at least one real root

 this static solution is stable for any region of the parameter space for which

$$2(a_1 + 2a_2q + 3a_3q^2) \neq 0$$
 and real

Lavinia Heisenberg

DI Proxy theory Introduction Conclusion **Proxy theory** We had the following Lagrangian in the decoupling limit $\mathcal{L} = -\frac{1}{2} h^{\mu\nu} \mathcal{E}^{\alpha\beta}_{\mu\nu} h_{\alpha\beta} + h^{\mu\nu} X^{(1)}_{\mu\nu} + \frac{a_2}{\Lambda^3} h^{\mu\nu} X^{(2)}_{\mu\nu} + \frac{a_3}{\Lambda^6} h^{\mu\nu} X^{(3)}_{\mu\nu} + \frac{1}{2M_r} h^{\mu\nu} T_{\mu\nu}$ lets integrate by part the first interaction $h^{\mu\nu}X^{(1)}_{\mu\nu}$: $h^{\mu\nu}X^{(1)}_{\mu\nu} = h^{\mu\nu}(\Box\phi\eta_{\mu\nu} - \partial_{\mu}\partial_{\nu}\phi) = h^{\mu\nu}(\partial_{\alpha}\partial^{\alpha}\phi\eta_{\mu\nu} - \partial_{\mu}\partial_{\nu}\phi)$ $= (\Box h - \partial_{\mu}\partial_{\nu}h^{\mu\nu})\phi$ $= -R\phi$

so covariantization of the first interaction: $h^{\mu
u}X^{(1)}_{\mu
u}\longleftrightarrow -R\phi$

Lavinia Heisenberg

Introduction dRGT DL (Proxy theory) Conclusion Proxy theory

Similarly, we can covariantize the other interaction terms. One finds the following correspondences:

 $\begin{aligned} h^{\mu\nu} X^{(1)}_{\mu\nu} &\longleftrightarrow & -\phi R \\ h^{\mu\nu} X^{(2)}_{\mu\nu} &\longleftrightarrow & -\partial_{\mu} \phi \partial_{\nu} \phi G^{\mu\nu} \\ h^{\mu\nu} X^{(3)}_{\mu\nu} &\longleftrightarrow & -\partial_{\mu} \phi \partial_{\nu} \phi \Phi_{\alpha\beta} L^{\mu\alpha\nu\beta} \end{aligned}$

such that the Lagrangian becomes

$$\mathcal{L}^{\phi} = M_p \left(-\phi R - \frac{a_2}{\Lambda^3} \partial_{\mu} \phi \partial_{\nu} \phi G^{\mu\nu} - \frac{a_3}{\Lambda^6} \partial_{\mu} \phi \partial_{\nu} \phi \Phi_{\alpha\beta} L^{\mu\alpha\nu\beta} \right)$$

with the dual Riemann tensor

$$\begin{split} L^{\mu\alpha\nu\beta} &= 2R^{\mu\alpha\nu\beta} + 2(R^{\mu\beta}g^{\nu\alpha} + R^{\nu\alpha}g^{\mu\beta} - R^{\mu\nu}g^{\alpha\beta} - R^{\alpha\beta}g^{\mu\nu} \\ &+ R(g^{\mu\nu}g^{\alpha\beta} - g^{\mu\beta}g^{\nu\alpha}) \end{split}$$

A Proxy for Massive Gravity

Lavinia Heisenberg

Instead of focusing on the entire complicated model, study a proxy theory:

$$\mathcal{L} = \sqrt{-g} M_p (M_p R + -\phi R - \frac{a_2}{\Lambda^3} \partial_\mu \phi \partial_\nu \phi G^{\mu\nu} - \frac{a_3}{\Lambda^6} \partial_\mu \phi \partial_\nu \phi \Phi_{\alpha\beta} L^{\mu\alpha\nu\beta})$$

- in 4D $G_{\mu\nu}$ and $L^{\mu\alpha\nu\beta}$ are the only divergenceless tensors $\rightarrow \nabla_{\mu}G^{\mu\nu} = 0$ and $\nabla_{\mu}L^{\mu\alpha\nu\beta} = 0$
 - All eom are 2^{nd} order \rightarrow No instabilities
- Reproduces the decoupling limit → Exhibits the Vainsthein mechanism

Chkareuli, Pirtskhalava (Phys.Lett. B713 (2012) 99-103) de Rham, Heisenberg (PRD84 (2011) 043503)

Lavinia Heisenberg

Introduction dRGT DL (Proxy theory) Conclusion Self-accelerating solution

- self-acceleration solution: H = const and $\dot{H} = 0$.
- make the ansatz $\dot{\phi} = q \frac{\Lambda^3}{H}$.
- assume that we are in a regime where $H\phi\ll\dot{\phi}$

The Friedmann and field equations can be recast in

$$H^{2} = \frac{m^{2}}{3}(6q - 9a_{2}q^{2} - 30a_{3}q^{3})$$
$$H^{2}(18a_{2}q + 54a_{3}q^{2} - 12) = 0$$

Assuming $H \neq 0$, the field equation then imposes,

$$q = \frac{-a_2 \pm \sqrt{a_2^2 + 8a_3}}{6a_3}$$

 \rightarrow similar to DL our proxy theory admits a self-accelerated solution, with the Hubble parameter set by the graviton mass.

Lavinia Heisenberg

Introduction dRGT DL (Proxy theory) Conclusion Proxy theory $\mathcal{L}^{\phi} = M_p \left(-\phi R - \frac{a_2}{\Lambda^3} \partial_{\mu} \phi \partial_{\nu} \phi G^{\mu\nu} - \frac{a_3}{\Lambda^6} \partial_{\mu} \phi \partial_{\nu} \phi \Phi_{\alpha\beta} L^{\mu\alpha\nu\beta} \right)$

- We recover some decoupling limit results:
 - stable self-accelerating solutions within the space parameter space
- During the radiation domination the energy density for ϕ goes as $\rho^{\phi}_{\rm rad} \sim a^{-1/2}$ and during matter dominations as $\rho^{\phi}_{\rm mat} \sim a^{-3/2}$ and is constant for later times $\rho^{\phi}_{\Lambda} = {\rm const}$
- At early time, interactions for scalar mode are important \rightarrow cosmological screening effect
- Below a critical energy density, screening stop being efficient → scalar contribute significantly to the cosmological evolution
- But still the cosmological evolution different than in Λ CDM

Introduction dRGT DL (Proxy theory) Conclusion Degravitation solution

The effective energy density of the field ϕ is

$$ho^{\phi} = M_p (6H\dot{\phi} + 6H^2\phi - rac{9a_2}{\Lambda^3}H^2\dot{\phi}^2 - rac{30a_3}{\Lambda^6}H^3\dot{\phi}^3)$$

- If one takes φ = φ(t) and H = 0 → ρ^φ = 0
 → so the field has absolutely no effect and cannot help the background to degravitate.
- Fab Four has similar interactions, they find degravitation solution! (arXiv:1208.3373)
 BUT they rely strongly on spatial curvature
- in the absence of spatial curvature $\kappa = 0$, the contribution from the scalar field vanishes if H = 0.
 - \rightarrow BUT relying on spatial curvature brings concerns over instabilities

Introduction	dRGT	DL	Proxy theory	Conclusion
Conclusion				

- decoupling limit of dRGT
 - stable self-accelerating solution similar to ΛCDM
 - degravitating solution
- Proxy theory
 - stable self accelerating solution
 - no degravitating solution
 - the scalar mode does not decouple around the self-accelerating background
 - leads to an extra force during the history of the Universe
 - would influence the time sequence of gravitational clustering and the evolution of peculiar velocities, as well as the number density of collapsed objects.

Lavinia Heisenberg

(Conclusion)

cosmological observations in Proxy Theory

two categories: measurement of

geometrical probes

the Hubble function

- distance-redshift relation of supernovae
- measurements of the angular diameter distance as a function of redshift (CMB+BAO)

structure formation probes

the Growth function

- homogeneous growth of the cosmic structure
 → ISW
- non-linear growth
 - \rightarrow gravitational lensing
 - ightarrow formation of galaxies
 - \rightarrow clusters of galaxies by gravitational collapse

going on projects with Claudia de Rham, Matthias Bartelmann, Bjoern Malte Schaefer, Rampei Kimura, Jose Beltran Jimenez

Lavinia Heisenberg