Learning about inflation from large scale structure

Sarah Shandera
Penn State University

Shandera; CMU 25 Aug 2012

Better observations have theorists (re)asking:

(I) What particle physics is behind inflation?
(2) Is inflation right?

Better observations have theorists (re)asking:

(I) What particle physics is behind inflation?
(2) Is inflation right?

Interactions Non-Gaussianity

Shandera; CMU 25 Aug 2012

What has changed?

S Shift in consensus about what is 'natural' or likely for inflation theory
${ }^{*} \leqslant$ New better, observations \leftrightarrow more information! (Planck Satellite, LSS Surveys)
\& New ideas from LSS about how to observe primordial NG

What has changed?

S Shift in consensus about what is 'natural' or likely for inflation theory
s) New better, observations \leftrightarrow more information! (Planck Satellite LSS Surveys)
\& 6 New ideas from LSS about how to observe primordial NG

The Plan

I. Non-Gaussian toolkit

2. Example I:Theory driven
3. Example 2: Observation driven

Shandera; CMU 25 Aug 2012

I.The non-Gaussian toolkit

Shandera; CMU 25 Aug 2012

Example: the local ansatz

$$
\zeta(x)=\zeta_{g}(x)+\frac{3}{5} f_{N L}\left[\zeta_{g}^{2}(x)-\left\langle\zeta_{g}^{2}(x)\right\rangle\right]
$$

(Salopek, Bond; Komatsu, Spergel)

- Nearly Gaussian?

$$
\left|f_{N L}\right|<10^{9 / 2}
$$

- Positive skewness ($\mathrm{f}_{\mathrm{NL}}>0$) means more structure
- One parameter describes all moments

$$
\frac{\left\langle\zeta^{n}\right\rangle_{c}}{\left(\left\langle\zeta^{2}\right\rangle\right)^{n / 2}} \propto\left(f_{N L} \mathcal{P}_{\zeta}^{1 / 2}\right)^{n-2}
$$

Shandera; CMU 25 Aug 2012

More Generally...

- Interactions that don't screw up inflation are allowed:
*Self-interactions with symmetry
夷 Multi-field inflation
\& ${ }^{*}$ Interactions with spectator fields
- Different interactions \Rightarrow Different shapes in bispectrum and beyond

A First Pass: 3-point triangles

$$
\delta_{D}^{3}\left(\mathbf{k}_{1}+\mathbf{k}_{2}+\mathbf{k}_{3}\right) \Rightarrow
$$

- Squeezed

- Equilateral

Different Interactions, Different Triangles. But not I-to-I map!

Shandera; CMU 25 Aug 2012

Information in higher statistics

	Power Spectrum	Bispectrum		Beyond...
Information				
Amplitude				
Sign				
Scale Dependence				
Single Field				
Multi Field Shandera; CMU 25 Aug 2012				

Information in higher statistics

	Power Spectrum	Bispectrum	Beyond...
Information	$\|\vec{k}\|$		
Amplitude			
Sign			
Scale Dependence			
Single ${ }^{\text {Field }} \quad$ Multi Field			

Information in higher statistics

	Power Spectrum	Bispectrum	Beyond...	
Information	$\underline{\|\vec{k}\|}$			
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$			
Sign				
Scale Dependence				
Single Field				
Multi Field Shandera; CMU 25 Aug 2012				

Information in higher statistics

	Power Spectrum	Bispectrum	Beyond...	
Information	$\underline{\|\vec{k}\|}$			
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$			
Sign	-			
Scale Dependence				
Single Field				
Multi Field Shandera; CMU 25 Aug 2012				

Information in higher statistics

	Power Spectrum	Bispectrum		Beyond...
Information	$-\|\vec{k}\|$			
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$			
Sign	-			
Scale Dependence	$n_{s}-1$ not exact de Siter			
Single Field				
Multi Field Shandera; CMU 25 Aug 2012				

Information in higher statistics

	$\begin{array}{c}\text { Power } \\ \text { Spectrum }\end{array}$	Bispectrum		Beyond...
Information	$\underline{\|c\|} \mid$	\vec{k}_{1}		\vec{k}_{2}

Information in higher statistics

	$\begin{array}{c}\text { Power } \\ \text { Spectrum }\end{array}$	Bispectrum		Beyond...
Information	$\underline{\|c\|} \mid$	\vec{k}_{1}		\vec{k}_{2}

Information in higher statistics

	Power Spectrum	Bispectrum	Beyond...
Information	$\underline{\|\vec{k}\|}$	$\xrightarrow[\vec{k}_{3}]{\vec{k}_{1}} \vec{k}_{2}$	
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$	$\frac{H}{f}<1$ $\frac{m_{\sigma}}{H} \ll 1$	
Sign	-		
Scale Dependence	$n_{s}-1$ not exact de Sitter		
Single ${ }^{\boldsymbol{T}}$ Field Multi Field			

Information in higher statistics

	Power Spectrum	Bispectrum	Beyond...
Information	$\|\vec{k}\|$	$\xrightarrow[\vec{k}_{3}]{\vec{k}_{1}} \vec{k}_{2}$	
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$		
Sign	-	$f_{N L}>0$ More Structure	
Scale Dependence	$n_{s}-1$ not exact de Sitter		
Single ${ }^{\text {Field }} \quad$ Multi Field			

Information in higher statistics

	Power Spectrum	Bisp	ctrum	Beyond...
Information	$\|\vec{k}\|$		$\xrightarrow{{ }_{1}} \vec{k}_{2}$	
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$	$\frac{H}{f}<1$	$\frac{m_{\sigma}}{H} \ll 1$	
Sign	-	$f_{N L}>0$ More Structure		
Scale Dependence	$n_{s}-1$ not exact de Sitter	Scaling of interaction strength		
Single Field Multi Field				

Information in higher statistics

	Power Spectrum	Bispe	ctrum	Beyond...
Information	$\|\vec{k}\|$	$\frac{\vec{k}_{1}}{\vec{k}_{3}}$	$\xrightarrow{\vec{t}_{1}} \vec{k}_{2}$	
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$	$\frac{H}{f}<1$	$\frac{m_{\sigma}}{H} \ll 1$	
Sign	-	$f_{N L}$ More St	>0 tructure	
Scale Dependence	$n_{s}-1$ not exact de Sitter	Scaling of interaction strength	Difference between fields	
Single Field				ield

Information in higher statistics

	Power Spectrum	Bispe	ctrum	Beyond...
Information	$\|\vec{k}\|$		$\xrightarrow{\vec{t}_{1}} \vec{k}_{2}$	N -gon
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$	$\frac{H}{f}<1$	$\frac{m_{\sigma}}{H} \ll 1$	
Sign	-	$f_{N L}$ More	>0 tructure	
Scale Dependence	$n_{s}-1$ not exact de Sitter	Scaling of interaction strength	Difference between fields	
Single Field				ield

Information in higher statistics

	Power Spectrum	Bisp	ctrum	Beyond...
Information	$\|\vec{k}\|$		$\xrightarrow{\overrightarrow{r_{1}}} \vec{k}_{2}$	N -gon
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$	$\frac{H}{f}<1$	$\frac{m_{\sigma}}{H} \ll 1$	Relative Importance Scaling of Moments
Sign	-	$f_{N L}$ More	>0 ructure	
Scale Dependence	$n_{s}-1$ not exact de Sitter		Difference between fields	
$\begin{array}{ll} \hline \text { Single Field } & \text { Multi Field } \end{array}$				

Information in higher statistics

	Power Spectrum	Bispe	ctrum	Beyond...
Information	$\|\vec{k}\|$		$\xrightarrow{\vec{t}_{1}} \vec{k}_{2}$	N -gon
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$	$\frac{H}{f}<1$	$\frac{m_{\sigma}}{H} \ll 1$	Relative Importance Scaling of Moments
Sign	-	$f_{N L}>0$ More Structure		(odd moments, pattern continues)
Scale Dependence	$n_{s}-1$ not exact de Sitter	Scaling of interaction strength	Difference between fields	
Single Field Multi Field				

Information in higher statistics

	Power Spectrum	Bispe	ctrum	Beyond...
Information	$\|\vec{k}\|$		$\xrightarrow{\vec{t}_{1}} \vec{k}_{2}$	N -gon
Amplitude	$\frac{H^{2}}{\epsilon M_{p}^{2}}$	$\frac{H}{f}<1$	$\frac{m_{\sigma}}{H} \ll 1$	Relative Importance Scaling of Moments
Sign	-	$f_{N L}>0$ More Structure		(odd moments, pattern continues)
Scale Dependence	$n_{s}-1$ not exact de Sitter	Scaling of interaction strength	Difference between fields	?
Single Field Multi Field				

Non-Gaussian Statistics? Infinitely many!

Which cases are:

* Distinguishable
* Physical

水 Natural

* Consistent with inflation
* Consistent with measured power spectrum?

How much overlap?

Excitement about NG:

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

Excitement about NG:

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

But:

Do we risk having just a more elaborate version of the same old problems

Excitement about NG:

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

But:

Do we risk having just a more elaborate version of the same old problems
(But supports particle physics position?)

Excitement about NG:

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

But:

Do we risk having just a more elaborate version of the same old problems
(But supports particle physics position?)

- Or -

Can we gain something more?

Shandera; CMU 25 Aug 2012

Excitement about NG:

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

But:

Do we risk having just a more elaborate version of the same old problems
(But supports particle physics position?)

- Or -

Can we gain something more?
Must go beyond three-point and see structure of NG
Shandera; CMU 25 Aug 2012

II.Theory Driven Example

Shandera; CMU 25 Aug 2012

Example: Symmetry for the Inflaton

* Inflaton with a shift symmetry: $\quad \phi \rightarrow \phi+c$
(Freese; Silverstein, Westphal; Barnaby, Peloso;Anber, Sorbo; Chen
et al; Flauger, Pajer; Leblond, Pajer;Adshead,Wyman...)
Shandera; CMU 25 Aug 2012

Example: Symmetry for the Inflaton

* Inflaton with a shift symmetry: $\phi \rightarrow \phi+c$

Lesson from the Standard Model:Any allowed interactions appear....

Example: Symmetry for the Inflaton

* Inflaton with a shift symmetry: $\phi \rightarrow \phi+c$

Lesson from the Standard Model:Any allowed interactions appear....
-Derivative self-interactions

- Couplings to gauge fields
- Terms that break the symmetry slightly

Shift symmetry continued

- Each family of terms generates a family of correlation functions for the fluctuations:

$$
V(\phi)=\mu^{4}\left[1-b \operatorname{Cos}\left(\frac{\phi}{f}\right)\right]+\ldots
$$

$$
V\left(\phi_{0}\right)+\left.V^{\prime \prime}\right|_{\phi_{0}} \delta \phi^{2}+\left.V^{(3)}\right|_{\phi_{0}} \delta \phi^{3}+\left.V^{(4)}\right|_{\phi_{0}} \delta \phi^{4}+\ldots
$$

Shift symmetry continued

-Each family of terms generates a family of correlation functions for the fluctuations:

$$
V(\phi)=\mu^{4}\left[1-b \operatorname{Cos}\left(\frac{\phi}{f}\right)\right]+\ldots
$$

$$
V\left(\phi_{0}\right)+\left.V^{\prime \prime}\right|_{\phi_{0}} \delta \phi^{2}+\left.V^{(3)}\right|_{\phi_{0}} \delta \phi^{3}+\left.V^{(4)}\right|_{\phi_{0}} \delta \phi^{4}+\ldots
$$

s) New mass scale, f: amplitude of non-Gaussianity

Shift symmetry continued

-Each family of terms generates a family of correlation functions for the fluctuations:

$$
V(\phi)=\mu^{4}\left[1-b \operatorname{Cos}\left(\frac{\phi}{f}\right)\right]+\ldots
$$

$$
V\left(\phi_{0}\right)+\left.V^{\prime \prime}\right|_{\phi_{0}} \delta \phi^{2}+\left.V^{(3)}\right|_{\phi_{0}} \delta \phi^{3}+\left.V^{(4)}\right|_{\phi_{0}} \delta \phi^{4}+\ldots
$$

\% 3 New mass scale, f : amplitude of non-Gaussianity
\& 3 Patterns in the correlation functions

Each interaction has a different signature

Small Sound Speed

Resonant terms

Feeder field

Shandera; CMU 25 Aug 2012

Each interaction has a different signature

Small Sound Speed

* K Equilateral Bispectrum

Resonant terms

Feeder field

Shandera; CMU 25 Aug 2012

Each interaction has a different signature

Small Sound Speed
\& ${ }^{\text {K }}$ Equilateral Bispectrum

Resonant terms
2*Bispectrum has oscillating amplitude

Feeder field

Shandera; CMU 25 Aug 2012

Each interaction has a different signature

Small Sound Speed
\& ${ }^{\text {S }}$ Equilateral Bispectrum

Feeder field
\& Bispectrum has oscillating amplitude
\& ${ }^{\text {S }}$ Equilateral Bispectrum

Shandera; CMU 25 Aug 2012

Each interaction has a different signature

Small Sound Speed
\& ${ }^{\text {S }}$ Equilateral Bispectrum

Resonant terms

Feeder field
\% Bispectrum has oscillating amplitude
\% ${ }^{\text {S }}$ Equilateral Bispectrum \% 3 Moments Scale Differently

Shandera; CMU 25 Aug 2012

(At least) Two equilateral types

(At least) Two equilateral types

- Distinguishable by scaling behavior:

(At least) Two equilateral types

- Distinguishable by scaling behavior:

$$
\mathcal{M}_{n} \sim \frac{\left\langle\Phi^{n}\right\rangle}{\left(\left\langle\Phi^{2}\right\rangle\right)^{n / 2}}
$$

(At least) Two equilateral types

- Distinguishable by scaling behavior:

$$
\mathcal{M}_{n} \sim \frac{\left\langle\Phi^{n}\right\rangle}{\left(\left\langle\Phi^{2}\right\rangle\right)^{n / 2}}
$$

(At least) Two equilateral types

- Distinguishable by scaling behavior:

$$
\mathcal{M}_{n} \sim \frac{\left\langle\Phi^{n}\right\rangle}{\left(\left\langle\Phi^{2}\right\rangle\right)^{n / 2}}
$$

Hierarchical: $\mathcal{M}_{n} \propto\left(\mathcal{I P}_{\Phi}^{1 / 2}\right)^{n-2}$

(At least) Two equilateral types

- Distinguishable by scaling behavior:

$$
\mathcal{M}_{n} \sim \frac{\left\langle\Phi^{n}\right\rangle}{\left(\left\langle\Phi^{2}\right\rangle\right)^{n / 2}}
$$

$$
\text { Hierarchical: } \frac{\mathcal{M}_{n} \propto\left(\mathcal{I} \mathcal{P}_{\Phi}^{1 / 2}\right)^{n-2}}{\mathcal{I} \propto c_{s}^{-2} \propto f_{N L}}
$$

(At least) Two equilateral types

- Distinguishable by scaling behavior:

$$
\mathcal{M}_{n} \sim \frac{\left\langle\Phi^{n}\right\rangle}{\left(\left\langle\Phi^{2}\right\rangle\right)^{n / 2}}
$$

Hierarchical: $\mathcal{M}_{n} \propto\left(\mathcal{I P}_{\Phi}^{1 / 2}\right)^{n-2}$

$$
\mathcal{I} \propto c_{s}^{-2} \propto f_{N L}
$$

(At least) Two equilateral types

- Distinguishable by scaling behavior:

$$
\mathcal{M}_{n} \sim \frac{\left\langle\Phi^{n}\right\rangle}{\left(\left\langle\Phi^{2}\right\rangle\right)^{n / 2}}
$$

$$
\text { Hierarchical: } \frac{\mathcal{M}_{n} \propto\left(\mathcal{I} \mathcal{P}_{\Phi}^{1 / 2}\right)^{n-2}}{\mathcal{I} \propto c_{s}^{-2} \propto f_{N L}}
$$

Feeder: $\mathcal{M}_{n} \propto \mathcal{I}^{n}$

Different Scaling?

- Relative importance of higher order moments is greater for fixed amplitude of three point
- Skewness isn't everything...

Shandera; CMU 25 Aug 2012

Is this Distinction Observable?

- Which measurements might have big signals from higher moments?
- Simulations in progress (w/ Saroj Adhikari, L. Book, N. Dalal)
- Encouraging tale of the galaxy bias...

NG MASS FUNCTION

\$What can we learn from rare objects?
(Barnaby, Shandera I I 09.2985;
With A. Mantz, D. Rapetti, X-ray cluster in progress
With A. Erickcek, P. Scott: Ultra Compact Mini Halos and Primordial Black Holes: difference more sig when more NG!)

Shandera; CMU 25 Aug 2012

III. Observation Driven Example

Shandera; CMU 25 Aug 2012

Non-Gaussian Bias

- Effect was discovered in an N-body simulation: (Dalal et al 0710.4560)

$$
\Phi(x)=\Phi_{G}(x)+f_{N L}\left[\Phi_{G}^{2}(x)-\left\langle\Phi_{G}^{2}(x)\right\rangle\right]
$$

- Sensitive to a particular sort of correlation:

Shandera; CMU 25 Aug 2012

Bias and Local Non-Gaussianity

Shandera; CMU 25 Aug 2012

Bias and Local Non-Gaussianity

$$
P_{h m}(k)=b(M) P_{m m}(k)
$$

Shandera; CMU 25 Aug 2012

Bias and Local Non-Gaussianity

$$
P_{h m}(k)=b(M) P_{m m}(k)
$$

(Halo) \times (Linear matter)

Linear matter

Shandera; CMU 25 Aug 2012

Bias and Local Non-Gaussianity

(Halo) x (Linear matter)

Linear matter
"Bias"

Shandera; CMU 25 Aug 2012

Bias and Local Non-Gaussianity

(Halo) \times (Linear matter)
Linear matter
"Bias"

$$
P_{h m}(k)=b\left(M, f_{N L}, k\right) P_{m m}(k)
$$

Shandera; CMU 25 Aug 2012

Bias and Local Non-Gaussianity

(Halo) \times (Linear matter)

Linear matter

"Bias"

"Non-Gaussian Bias"
Shandera; CMU 25 Aug 2012

Local Non-Gaussianity and bias

- Correlation between long and short modes: enhanced clustering

Local Non-Gaussianity and

bias

- Correlation between long and short modes: enhanced clustering

- Local density and local σ_{8} determine where halos form

Local Non-Gaussianity and

bias

- Correlation between long and short modes: enhanced clustering

- Local density and local σ_{8} determine where halos form

$$
\Delta b_{N G}\left(k, M, f_{N L}\right) \propto \frac{f_{N L}}{k^{2}}
$$

(Dalal et al 0710.4560)

A good constraint:

$$
\begin{aligned}
-57(-89) & <f_{N L}<69(90) \\
8 & <f_{N L}<88
\end{aligned}
$$

(Slosar et al 2008)
(Xia et al 2011)

Shandera; CMU 25 Aug 2012

A good constraint:

$$
\begin{aligned}
-57(-89) & <f_{N L}<69(90) \\
8 & <f_{N L}<88
\end{aligned}
$$

Compare CMB bispectrum constraint (WMAP 7 years):

A good constraint:

$$
\begin{aligned}
-57(-89) & <f_{N L}<69(90) \\
8 & <f_{N L}<88
\end{aligned}
$$

Compare CMB bispectrum constraint (WMAP 7 years):

$$
-10<f_{N L}<74
$$

A good constraint:

$$
\begin{aligned}
-57(-89) & <f_{N L}<69(90) \\
8 & <f_{N L}<88
\end{aligned}
$$

Compare CMB bispectrum constraint (WMAP 7 years):

$$
-10<f_{N L}<74
$$

But....

Shandera; CMU 25 Aug 2012

A good constraint:

$$
\begin{aligned}
-57(-89) & <f_{N L}<69(90) \\
8 & <f_{N L}<88
\end{aligned}
$$

(Slosar et al 2008)
(Xia et al 2011)
Compare CMB bispectrum constraint (WMAP 7 years):

$$
-10<f_{N L}<74
$$

But....

\%WWhat does $f_{N L}$ measure/constrain?
\& \$What do inflation models actually predict?
\& $\$$ Are observations sensitive to those details?
Shandera; CMU 25 Aug 2012

Which theories can look like the local ansatz?

- Single field $\xrightarrow{\longrightarrow}$ Local Non-Gaussianity (near timetranslation invariance; Maldacena; Senatore, Zaldarriaga; Creminelli et al; Hinterbichler et al)

$$
\begin{aligned}
B\left(k_{\ell}, k_{s}, k_{s}\right) & \rightarrow \mathcal{O}\left(n_{s}-1\right) \frac{1}{k_{\ell}^{3}}+\mathcal{O}\left(\frac{1}{k_{\ell}}\right) \\
k_{\ell} & \rightarrow 0
\end{aligned}
$$

Shandera; CMU 25 Aug 2012

Which theories can look like the local ansatz?

- Single field \longrightarrow Local Non-Gaussianity (near timetranslation invariance; Maldacena; Senatore, Zaldarriaga; Creminelli et al; Hinterbichler et al)

$$
\begin{aligned}
B\left(k_{\ell}, k_{s}, k_{s}\right) & \rightarrow \mathcal{O}\left(n_{s}-1\right) \frac{1}{k_{\ell}^{3}}+\mathcal{O}\left(\frac{1}{k_{\ell}}\right)
\end{aligned}
$$

- Multi-field: two degrees of freedom contribute to inflationary background and/or fluctuations IS local

Shandera; CMU 25 Aug 2012

Distinguishing Multi-Field models

- Break correlation between background evolution and fluctuations
- Anything goes?
- Maybe observations can help...

Distinguishing Multi-Field models

- Break correlation between background evolution and fluctuations
- Anything goes?
- Maybe observations can help...

Multi-field \rightarrow Local shape \longrightarrow Halo Bias

Shandera; CMU 25 Aug 2012

Beyond the local Ansatz

$$
\Phi(x)=\Phi_{G}(x)+f_{N L}\left[\Phi_{G}^{2}(x)-\left\langle\Phi_{G}^{2}(x)\right\rangle\right]
$$

Beyond the local Ansatz

$$
\Phi(x)=\Phi_{G}(x)+f_{N L}\left[\Phi_{G}^{2}(x)-\left\langle\Phi_{G}^{2}(x)\right\rangle\right]
$$

- Generalize to match particle physics models:

Beyond the local Ansatz

$$
\Phi(x)=\Phi_{G}(x)+f_{N L}\left[\Phi_{G}^{2}(x)-\left\langle\Phi_{G}^{2}(x)\right\rangle\right]
$$

- Generalize to match particle physics models:

$$
B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\square P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm } .
$$

Beyond the local Ansatz

$$
\Phi(x)=\Phi_{G}(x)+f_{N L}\left[\Phi_{G}^{2}(x)-\left\langle\Phi_{G}^{2}(x)\right\rangle\right]
$$

- Generalize to match particle physics models:

$$
\underbrace{\left.B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\square \xi_{\Phi}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm } .}_{\substack{\text { Ratio of } \\ \text { contributions of } \\ \text { each field }}}
$$

Beyond the local Ansatz

$$
\Phi(x)=\Phi_{G}(x)+f_{N L}\left[\Phi_{G}^{2}(x)-\left\langle\Phi_{G}^{2}(x)\right\rangle\right]
$$

- Generalize to match particle physics models:

$$
\underbrace{B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) k_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm } .}_{\begin{array}{c}
\text { Self-interactions of } \\
\text { one field }
\end{array}}
$$

Beyond the local Ansatz

$$
\Phi(x)=\Phi_{G}(x)+f_{N L}\left[\Phi_{G}^{2}(x)-\left\langle\Phi_{G}^{2}(x)\right\rangle\right]
$$

- Generalize to match particle physics models:

$$
\underbrace{B_{\Phi}\left(\mathbf{k}_{1}, \mathbf{k}_{2}, \mathbf{k}_{3}\right)=\xi_{s}\left(k_{3}\right) \xi_{m}\left(k_{1}\right) \xi_{m}\left(k_{2}\right) P_{\Phi}\left(k_{1}\right) P_{\Phi}\left(k_{2}\right)+5 \text { perm } .}_{\begin{array}{c}
\text { Self-interactions of } \\
\text { one field }
\end{array}}
$$

Can use this even more generally....

NG bias, generalized

$$
\Delta b_{N G}\left(k, M, f_{N L}\right) \propto \frac{f_{N L}}{k^{2}} \rightarrow \frac{f_{N L}^{e f f}(M)}{k^{\alpha}}
$$

Shandera; CMU 25 Aug 2012

NG bias, generalized

$$
\begin{aligned}
& \Delta b_{N G}\left(k, M, f_{N L}\right) \propto \frac{f_{N L}}{k^{2}} \\
& \text { So far models give: } 0 \leq \alpha \leq 3
\end{aligned}
$$

Standard Single field $\quad \alpha=0$
Multiple Light fields $\quad \alpha=2 \pm \mathcal{O}(\epsilon, \eta) \quad$ Byrnes et al; Seery et al;

Quasi Single field $\quad 1 / 2 \leq \alpha \leq 2 \quad$ Chen, Wang;
Generalized Initial State $\quad \alpha \lesssim 3$ Agullo, Parker; Agullo, Shandera; Ganc, Komatsu
Resonant Interaction $\quad \alpha \approx 1 \quad$ Chen et al;

Shandera; CMU 25 Aug 2012

NG bias, generalized

$$
\begin{aligned}
& \Delta b_{N G}\left(k, M, f_{N L}\right) \propto \frac{f_{N L}}{k^{2}} \\
& \text { So far models give: } 0 \leq \alpha \leq 3
\end{aligned}
$$

Standard Single field	$\alpha=0$	
Multiple Light fields	$\alpha=2 \pm \mathcal{O}(\epsilon, \eta)$	Byrnes et al; Seery et al;
Quasi Single field	$1 / 2 \leq \alpha \leq 2$	Chen, Wang;
Generalized Initial State	$\alpha \lesssim 3$	Agullo, Parker;Agullo, Shandera;
Ganc, CKomatsu		
Resonant Interaction	$\alpha \approx 1$	Chen et al;

Shandera; CMU 25 Aug 2012

Does an observation of local NG really rule out Single Field?

Shandera; CMU 25 Aug 2012

Does an observation of local NG really rule out Single Field?

- Consistency condition doesn't have to hold away from $k_{\ell} \rightarrow 0$
- Over what k-range can SF have local NG? (Small scale probes needed!)
- How divergent can the squeezed limit be?
- Easy out: more divergent is easier to test (in principle) (N.Agarwal's talk)
- Can soft limits of higher order correlation functions ever look (locally) local? (Smith et al; Roth, Porciani; E. Nelson's talk)

Summary:

* LSS surveys are coming! They constrain initial conditions (maybe even initial conditions of inflation)
* If Planck + LSS shows evidence of local NG, pressure on single field
* Can we find observationally allowed NG that inflation cannot predict?

