Learning about inflation from large scale structure

Sarah Shandera Penn State University

Better observations have theorists (re)asking:

(1) What particle physics is behind inflation?

(2) Is inflation right?

Better observations have theorists (re)asking:

(1) What particle physics is behind inflation?

(2) Is inflation right?

Interactions Non-Gaussianity

What has changed?

Shift in consensus about what is 'natural' or likely for inflation theory

- New ideas from LSS about how to observe primordial NG

What has changed?

Shift in consensus about what is 'natural' or likely for inflation theory

- New better, observations \leftrightarrow more information! (Planck Satellite LSS Surveys)
- New ideas from LSS about how to observe primordial NG

The Plan

- I. Non-Gaussian toolkit
- 2. Example 1: Theory driven
- 3. Example 2: Observation driven

I.The non-Gaussian toolkit

Example: the local ansatz

$$\zeta(x) = \zeta_g(x) + \frac{3}{5} f_{NL}[\zeta_g^2(x) - \langle \zeta_g^2(x) \rangle]$$

(Salopek, Bond; Komatsu, Spergel)

• Nearly Gaussian?
$$|f_{NL}| < 10^{9/2}$$

- Positive skewness (f_{NL} > 0) means more structure
- One parameter describes all moments

$$\frac{\langle \zeta^n \rangle_c}{(\langle \zeta^2 \rangle)^{n/2}} \propto (f_{NL} \mathcal{P}_{\zeta}^{1/2})^{n-2}$$

More Generally...

- Interactions that don't screw up inflation are allowed:
 - *****Self-interactions with symmetry
 - *****Multi-field inflation
 - *****Interactions with spectator fields
- Different interactions \Rightarrow Different shapes in bispectrum and beyond

Friday, August 24, 2012

	Power Spectrum	Bispectrum		Beyon	d
Information					
Amplitude					
Sign					
Scale Dependence					
	Singl	e Field	Mu	lti Field	
			Shande	era; CMU 25	Aug 20

	Power Spectrum	Bispe	ectrum	Beyond
Information	$ ec{k} $			
Amplitude				
Sign				
Scale Dependence				
	Sing	le Field	к Mu	lti Field
			Shande	era; CMU 25 Aug 20

	Power Spectrum	Bispe	ectrum	Beyond	•
Information	$ ec{k} $				
Amplitude	$\frac{H^2}{\epsilon M_p^2}$				
Sign					
Scale Dependence					
	Sing	le Field	Mu	lti Field	
			Shande	era; CMU 25 Au	ug 20

	Power Spectrum	Bispe	ectrum	Beyond	
Information	$ ec{k} $				
Amplitude	$\frac{H^2}{\epsilon M_p^2}$				
Sign					
Scale Dependence					
	Sing	le Field	К Ми	lti Field	
			Shande	era; CMU 25 Au	g 20

	Power Spectrum	Bispe	ctrum	Beyond	
Information	$ ec{k} $				
Amplitude	$\frac{H^2}{\epsilon M_p^2}$				
Sign					
Scale Dependence	n_s-1 not exact de Sitter				
	Singl	e Field	► Mu	lti Field	
			Shande	era; CMU 25 Aug	20

	Power Spectrum	Bispec	trum	Beyond	•••
Information	$ ec{k} $	$\vec{k_1}$ $\vec{k_3}$	\vec{r} \vec{k}_2		
Amplitude	$\frac{H^2}{\epsilon M_p^2}$				
Sign					
Scale Dependence	n_s-1 not exact de Sitter				
	Singl	e Field	Mu	lti Field	
			Shande	ra; CMU 25 A	Aug 20

	Power Spectrum	Bispe	ctrum	Beyond	!
Information	$ ec{k} $	\vec{k}	\vec{k}_2		
Amplitude	$\frac{H^2}{\epsilon M_p^2}$	$\frac{H}{f} < 1$			
Sign					
Scale Dependence	n_s-1 not exact de Sitter				
	Singl	e Field	Mu	lti Field	
			Shande	era; CMU 25	Aug 20

	Power Spectrum	Bispectrum		Beyond.	••
Information	$ ec{k} $	$\vec{k_1}$ $\vec{k_2}$ $\vec{k_3}$			
Amplitude	$\frac{H^2}{\epsilon M_p^2}$	$\frac{H}{f} < 1$	$\frac{m_{\sigma}}{H} \ll 1$		
Sign					
Scale Dependence	n_s-1 not exact de Sitter				
	Singl	e Field	К Mu	lti Field	
			Shande	era; CMU 25 A	ug 20

	Power Spectrum	Bispe	ectrum	Beyond
Information	$ ec{k} $	$\vec{k_1}$ $\vec{k_2}$ $\vec{k_3}$		
Amplitude	$\frac{H^2}{\epsilon M_p^2}$	$\frac{H}{f} < 1$	$\frac{m_{\sigma}}{H} \ll 1$	
Sign		f_{NL} More St	> 0 tructure	
Scale Dependence	n_s-1 not exact de Sitter			
	Singl	e Field	⊼ Mu	lti Field
			Shande	era; CMU 25 Aug 20

	Power Spectrum	Bispe	ctrum	Beyond
Information	$ ec{k} $	$\overline{\vec{k}}$	\vec{k}_1	
Amplitude	$\frac{H^2}{\epsilon M_p^2}$	$\frac{H}{f} < 1$	$\frac{m_{\sigma}}{H} \ll 1$	
Sign		f_{NL} More St	> 0 tructure	
Scale Dependence	n_s-1 not exact de Sitter	Scaling of interaction strength		
	Singl	e Field	К Mu	lti Field
			Shande	era; CMU 25 Aug 20

	Power Spectrum	Bispectrum		Beyond
Information	$ ec{k} $	$\vec{k_1}$ $\vec{k_2}$ $\vec{k_3}$		
Amplitude	$\frac{H^2}{\epsilon M_p^2}$	$\frac{H}{f} < 1$	$\frac{m_{\sigma}}{H} \ll 1$	
Sign		f_{NL} More St	> 0 tructure	
Scale Dependence	n_s-1 not exact de Sitter	Scaling of interaction strength	Difference between fields	
	Sing	e Field	к Mu	lti Field
			Shande	era: CMU 25 Aug 20

	Power Spectrum	Bispectrum		Beyond
Information	$ ec{k} $	$\vec{k_1}$ $\vec{k_2}$ $\vec{k_3}$		N-gon
Amplitude	$\frac{H^2}{\epsilon M_p^2}$	$\frac{H}{f} < 1$	$\frac{m_{\sigma}}{H} \ll 1$	
Sign		f_{NL} More St	> 0 tructure	
Scale Dependence	n_s-1 not exact de Sitter	Scaling of interaction strength	Difference between fields	
	Sing	e Field	Mu	lti Field
			Shande	era: CMU 25 Aug 20

	Power Spectrum	Bispectrum		Beyond	
Information	$ ec{k} $	$\vec{k_1}$ $\vec{k_2}$ $\vec{k_3}$		N-gon	
Amplitude	$\frac{H^2}{\epsilon M_p^2}$	$\frac{H}{f} < 1$	$\frac{m_{\sigma}}{H} \ll 1$	Relative Importance Scaling of Moments	
Sign		f_{NL} More St	> 0 tructure		
Scale Dependence	n_s-1 not exact de Sitter	Scaling of interaction strength	Difference between fields		
Single Field		K Multi Field			
Shandera: CMU 25 Aug					

	Power Spectrum	Bispectrum		Beyond	
Information	$ ec{k} $	$\vec{k_1}$ $\vec{k_2}$ $\vec{k_3}$		N-gon	
Amplitude	$\frac{H^2}{\epsilon M_p^2}$	$\frac{H}{f} < 1$	$\frac{m_{\sigma}}{H} \ll 1$	Relative Importance Scaling of Moments	
Sign		$f_{NL} > 0$ More Structure		(odd moments, pattern continues)	
Scale Dependence	n_s-1 not exact de Sitter	Scaling of interaction strength	Difference between fields		
Single Field		Nulti Field			
Shandera: CMU 25 Aug 2					

	Power Spectrum	Bispectrum		Beyond		
Information	$ ec{k} $	$\overline{\vec{k}}_3$	\vec{k}_1	N-gon		
Amplitude	$\frac{H^2}{\epsilon M_p^2}$	$\frac{H}{f} < 1$	$\frac{m_{\sigma}}{H} \ll 1$	Relative Importance Scaling of Moments		
Sign		$f_{NL} > 0$ More Structure		(odd moments, pattern continues)		
Scale Dependence	n_s-1 not exact de Sitter	Scaling of interaction strength	Difference between fields	?		
Single Field		K Multi Field				
Shandera; CMU 25 Aug 20						

Non-Gaussian Statistics? Infinitely many!

Which cases are:

***** Distinguishable

* Natural

***** Consistent with inflation

***** Consistent with measured power spectrum?

How much overlap?

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

But:

Do we risk having just a more elaborate version of the same old problems

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

But:

Do we risk having just a more elaborate version of the same old problems

(But supports particle physics position?)

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

But:

Do we risk having just a more elaborate version of the same old problems

(But supports particle physics position?)

- Or -

Can we gain something more?

Non-Gaussianity: More numbers (eg, 3 point, triangles)!

But:

Do we risk having just a more elaborate version of the same old problems

(But supports particle physics position?)

- Or -

Can we gain something more?

Must go beyond three-point and see structure of NG

II. Theory Driven Example

Example: Symmetry for the Inflaton

Inflaton with a shift symmetry: $(\phi - \phi)$

(Freese; Silverstein, Westphal; Barnaby, Peloso; Anber, Sorbo; Chen et al; Flauger, Pajer; Leblond, Pajer; Adshead, Wyman...)

Shandera; CMU 25 Aug 2012

Friday, August 24, 2012

Example: Symmetry for the Inflaton

Lesson from the Standard Model: Any allowed interactions appear....

(Freese; Silverstein, Westphal; Barnaby, Peloso; Anber, Sorbo; Chen et al; Flauger, Pajer; Leblond, Pajer; Adshead, Wyman...)

Shandera; CMU 25 Aug 2012

Friday, August 24, 2012

Example: Symmetry for the Inflaton

Lesson from the Standard Model: Any allowed interactions appear....

- Derivative self-interactions
- Couplings to gauge fields
- •Terms that break the symmetry slightly

(Freese; Silverstein, Westphal; Barnaby, Peloso; Anber, Sorbo; Chen et al; Flauger, Pajer; Leblond, Pajer; Adshead, Wyman...)

Shift symmetry continued

•Each family of terms generates a *family of* correlation functions for the fluctuations:

$$V(\phi) = \mu^4 \left[1 - b \operatorname{Cos}\left(\frac{\phi}{f}\right) \right] + \dots$$

$$V(\phi_0) + V''|_{\phi_0} \delta \phi^2 + V^{(3)}|_{\phi_0} \delta \phi^3 + V^{(4)}|_{\phi_0} \delta \phi^4 + \dots$$
Shift symmetry continued

•Each family of terms generates a *family of* correlation functions for the fluctuations:

$$V(\phi) = \mu^4 \left[1 - b \operatorname{Cos}\left(\frac{\phi}{f}\right) \right] + \dots$$

$$V(\phi_0) + V''|_{\phi_0} \delta \phi^2 + V^{(3)}|_{\phi_0} \delta \phi^3 + V^{(4)}|_{\phi_0} \delta \phi^4 + \dots$$

New mass scale, f: amplitude of non-Gaussianity

Shift symmetry continued

•Each family of terms generates a *family of* correlation functions for the fluctuations:

$$V(\phi) = \mu^4 \left[1 - b \operatorname{Cos}\left(\frac{\phi}{f}\right) \right] + \dots$$

$$V(\phi_0) + V''|_{\phi_0} \delta \phi^2 + V^{(3)}|_{\phi_0} \delta \phi^3 + V^{(4)}|_{\phi_0} \delta \phi^4 + \dots$$

 New mass scale, f: amplitude of non-Gaussianity
 Patterns in the correlation functions

Small Sound Speed

Resonant terms

Feeder field

Small Sound Speed

*Equilateral Bispectrum

Resonant terms

Feeder field

Small Sound Speed

Resonant terms

Bispectrum has oscillating amplitude

Feeder field

Small Sound Speed

Resonant terms

Bispectrum has oscillating amplitude

Small Sound Speed

Resonant terms

Bispectrum has oscillating amplitude

Feeder field

(Barnaby, Shandera; 1109.2985)

Shandera; CMU 25 Aug 2012

• Distinguishable by scaling behavior:

(Barnaby, Shandera; 1109.2985)

Shandera; CMU 25 Aug 2012

• Distinguishable by scaling behavior:

$$\mathcal{M}_n \sim \frac{\langle \Phi^n \rangle}{(\langle \Phi^2 \rangle)^{n/2}}$$

(Barnaby, Shandera; 1109.2985)

Shandera; CMU 25 Aug 2012

• Distinguishable by scaling behavior:

$$\mathcal{M}_n \sim \frac{\langle \Phi^n \rangle}{(\langle \Phi^2 \rangle)^{n/2}}$$

(Barnaby, Shandera; 1109.2985)

Shandera; CMU 25 Aug 2012

• Distinguishable by scaling behavior:

$$\mathcal{M}_n \sim \frac{\langle \Phi^n \rangle}{(\langle \Phi^2 \rangle)^{n/2}}$$

(Barnaby, Shandera; 1109.2985)

Shandera; CMU 25 Aug 2012

• Distinguishable by scaling behavior:

$$\mathcal{M}_n \sim \frac{\langle \Phi^n \rangle}{(\langle \Phi^2 \rangle)^{n/2}}$$

(Barnaby, Shandera; 1109.2985)

Shandera; CMU 25 Aug 2012

• Distinguishable by scaling behavior:

$$\mathcal{M}_n \sim \frac{\langle \Phi^n \rangle}{(\langle \Phi^2 \rangle)^{n/2}}$$

(Barnaby, Shandera; 1109.2985)

• Distinguishable by scaling behavior:

$$\mathcal{M}_n \sim \frac{\langle \Phi^n \rangle}{(\langle \Phi^2 \rangle)^{n/2}}$$

(Barnaby, Shandera; 1109.2985)

Different Scaling?

- Relative importance of higher order moments is greater for *fixed amplitude* of three point
- Skewness isn't everything...

Is this Distinction Observable?

- Which measurements might have big signals from higher moments?
- Simulations in progress (w/ Saroj Adhikari, L. Book, N. Dalal)
- Encouraging tale of the galaxy bias...

NG MASS FUNCTION

*What can we learn from rare objects?

(Barnaby, Shandera 1109.2985; With A. Mantz, D. Rapetti, X-ray cluster in progress With A. Erickcek, P. Scott: Ultra Compact Mini Halos and Primordial Black Holes: difference more sig when more NG!)

Shandera; CMU 25 Aug 2012

III. Observation Driven Example

Non-Gaussian Bias

• Effect was discovered in an N-body simulation: (Dalal et al 0710.4560)

$$\Phi(x) = \Phi_G(x) + f_{NL}[\Phi_G^2(x) - \langle \Phi_G^2(x) \rangle]$$

• Sensitive to a particular sort of correlation:

Bias and Local Non-Gaussianity

Bias and Local Non-Gaussianity

$$P_{hm}(k) = b(M)P_{mm}(k)$$

Bias and Local Non-Gaussianity $P_{hm}(k) = b(M)P_{mm}(k)$ Linear matter) Linear matter

Bias and Local Non-Gaussianity $P_{hm}(k) = b(M)P_{mm}(k)$ (Halo) x (Linear matter) Linear matter

$$P_{hm}(k) = b(M, f_{NL}, k)P_{mm}(k)$$

Bias and Local Non-Gaussianity $P_{hm}(k) = b(M)P_{mm}(k)$ (Halo) x (Linear matter) "Bias"

$$P_{hm}(k) = b(M, f_{NL}, k)P_{mm}(k)$$

$$P_{hm}(k) = [b_G(M) + \Delta b(f_{NL}, k, M)]P_{mm}(k)$$
"Non-Gaussian Bias"
Shandera; CMU 25 Aug 2012

Local Non-Gaussianity and bias

• Correlation between long and short modes: enhanced clustering \vec{k}_3

Local Non-Gaussianity and bias

- Correlation between long and short modes: enhanced clustering \vec{k}_3
- Local density and local σ_8 determine where halos form

Local Non-Gaussianity and bias

- Correlation between long and short modes: enhanced clustering \vec{k}_3
- Local density and local σ_8 determine where halos form

$$\Delta b_{NG}(k, M, f_{NL}) \propto \frac{f_{NL}}{k^2}$$

(Dalal et al 0710.4560)

 $-57(-89) < f_{NL} < 69(90) \\ 8 < f_{NL} < 88$

(Slosar et al 2008) (Xia et al 2011)

$$-57(-89) < f_{NL} < 69(90)$$

8 < f_{NL} < 88

(Slosar et al 2008) (Xia et al 2011)

Compare CMB bispectrum constraint (WMAP 7 years):

$$-57(-89) < f_{NL} < 69(90) 8 < f_{NL} < 88$$

(Slosar et al 2008) (Xia et al 2011)

Compare CMB bispectrum constraint (WMAP 7 years):

$$-10 < f_{NL} < 74$$
 (95%)

$$-57(-89) < f_{NL} < 69(90)$$

8 < f_{NL} < 88

(Slosar et al 2008) (Xia et al 2011)

Compare CMB bispectrum constraint (WMAP 7 years):

$$-10 < f_{NL} < 74$$
 (95%)

But....

$$-57(-89) < f_{NL} < 69(90) 8 < f_{NL} < 88$$

(Slosar et al 2008) (Xia et al 2011)

Compare CMB bispectrum constraint (WMAP 7 years):

$$-10 < f_{NL} < 74$$
 (95%)

But....

What does *f_{NL}* measure/constrain? What do inflation models actually predict? Are observations sensitive to those details?

Which theories can look like the local ansatz?

• Single field - Local Non-Gaussianity (near timetranslation invariance: Maldacena: Senatore, Zaldarriaga: Creminelli, et al.

translation invariance; Maldacena; Senatore, Zaldarriaga; Creminelli et al; Hinterbichler et al)

$$B(k_{\ell}, k_s, k_s) \to \mathcal{O}(n_s - 1) \frac{1}{k_{\ell}^3} + \mathcal{O}\left(\frac{1}{k_{\ell}}\right)$$
$$k_{\ell} \to 0$$

Which theories can look like the local ansatz?

• Single field Local Non-Gaussianity (near timetranslation invariance; Maldacena; Senatore, Zaldarriaga; Creminelli et al; Hinterbichler et al)

$$B(k_{\ell}, k_s, k_s) \to \mathcal{O}(n_s - 1) \frac{1}{k_{\ell}^3} + \mathcal{O}\left(\frac{1}{k_{\ell}}\right)$$
$$k_{\ell} \to 0$$

 Multi-field: two degrees of freedom contribute to inflationary background and/or fluctuations IS local

Distinguishing Multi-Field models

- Break correlation between background evolution and fluctuations
- Anything goes?
- Maybe observations can help...

Distinguishing Multi-Field models

- Break correlation between background evolution and fluctuations
- Anything goes?
- Maybe observations can help...

 $\Phi(x) = \Phi_G(x) + f_{NL}[\Phi_G^2(x) - \langle \Phi_G^2(x) \rangle]$

Friday, August 24, 2012

$$\Phi(x) = \Phi_G(x) + f_{NL}[\Phi_G^2(x) - \langle \Phi_G^2(x) \rangle]$$

• Generalize to match particle physics models:

Shandera; CMU 25 Aug 2012

$$\Phi(x) = \Phi_G(x) + f_{NL}[\Phi_G^2(x) - \langle \Phi_G^2(x) \rangle]$$

• Generalize to match particle physics models:

$$B_{\Phi}(\mathbf{k}_1,\mathbf{k}_2,\mathbf{k}_3) =$$

 $P_{\Phi}(k_1)P_{\Phi}(k_2) + 5 \text{ perm}$.

Shandera; CMU 25 Aug 2012

(Shandera, Dalal, Huterer 1010.3722)

$$\Phi(x) = \Phi_G(x) + f_{NL}[\Phi_G^2(x) - \langle \Phi_G^2(x) \rangle]$$

• Generalize to match particle physics models:

Shandera; CMU 25 Aug 2012

(Shandera, Dalal, Huterer 1010.3722)

$$\Phi(x) = \Phi_G(x) + f_{NL}[\Phi_G^2(x) - \langle \Phi_G^2(x) \rangle]$$

• Generalize to match particle physics models:

Shandera; CMU 25 Aug 2012

(Shandera, Dalal, Huterer 1010.3722)

$$\Phi(x) = \Phi_G(x) + f_{NL}[\Phi_G^2(x) - \langle \Phi_G^2(x) \rangle]$$

• Generalize to match particle physics models:

NG bias, generalized

$$\Delta b_{NG}(k, M, f_{NL}) \propto \frac{f_{NL}}{k^2} \longrightarrow \frac{f_{NL}^{eff}(M)}{k^{\alpha}}$$

NG bias, generalized

$$\Delta b_{NG}(k, M, f_{NL}) \propto \frac{f_{NL}}{k^2} \longrightarrow \frac{f_{NL}(M)}{k^{\alpha}}$$

So far models give: $0 \le \alpha \le 3$

Standard Single field	$\alpha = 0$	
Multiple Light fields	$\alpha = 2 \pm \mathcal{O}(\epsilon,$	$\eta)$ Byrnes et al; Seery et al;
Quasi Single field	$1/2 \le \alpha \le 2$	2 Chen, Wang;
Generalized Initial Stat	$lpha \lesssim 3$ /	Agullo, Parker; Agullo, Shandera; Ganc, Komatsu
Resonant Interaction	$\alpha \approx 1$	Chen et al;

NG bias, generalized

$$\Delta b_{NG}(k, M, f_{NL}) \propto \frac{f_{NL}}{k^2} \longrightarrow \frac{f_{NL}^{eff}(M)}{k^{\alpha}}$$

So far models give: $0 \le \alpha \le 3$

Standard Single field	$\alpha = 0$		
Multiple Light fields	$\alpha = 2 \pm \mathcal{O}(\epsilon, \eta)$	Byrnes et al; Seery et al;	
Quasi Single field	$1/2 \le \alpha \le 2$	Chen, Wang;	
Generalized Initial Stat	te $lpha\lesssim 3$ Agul	lo, Parker; Agullo, Shandera; Ganc, Komatsu	l
Resonant Interaction	$\alpha \approx 1$	Chen et al;	∫

Does an observation of local NG *really rule out* Single Field?

Does an observation of local NG *really rule out* Single Field?

- Consistency condition doesn't have to hold away from $k_{\ell} \rightarrow 0$
- Over what k-range can SF have local NG? (Small scale probes needed!)
- How divergent can the squeezed limit be?
- Easy out: more divergent is easier to test (in principle) (N.Agarwal's talk)
- Can soft limits of higher order correlation functions ever look (locally) local? (Smith et al; Roth, Porciani; E. Nelson's talk)

Summary:

LSS surveys are coming! They constrain initial conditions (maybe even initial conditions of inflation)

If Planck + LSS shows evidence of local NG, pressure on single field

Can we find observationally allowed NG that inflation cannot predict?