
Objective: The aim of this manuscript is to provide 
a review of contemporary research and applications on 
dynamic decision making (DDM).

Background: Since early DDM studies, there has 
been little systematic progress in understanding decision 
making in complex, dynamic systems. Our review contrib-
utes to better understanding of decision making processes 
in dynamic tasks.

Method: We discuss new research directions in DDM 
to highlight the value of simplification in the study of complex 
decision processes, divided into experimental and theoretical/
computational approaches, and focus on problems involving 
control tasks and search-and-choice tasks. In computational 
modeling, we discuss recent developments in instance-based 
learning and reinforcement learning that advance modeling 
the processes of dynamic decisions.

Results: Results from DDM research reflect a trend 
to scale down the complexity of DDM tasks to facili-
tate the study of the process of decision making. Recent 
research focuses on the dynamic complexity emerging 
from the interactions of actions and outcomes over time 
even in simple dynamic tasks.

Conclusion: The study of DDM in theory and prac-
tice continues to be a priority area of research. New 
research directions can help the human factors community 
to understand the effects of experience, knowledge, and 
adaption processes in DDM tasks, but research challenges 
remain to be addressed, and the recent perspectives dis-
cussed can help advance a systematic DDM research pro-
gram.

Application: Classical domains, such as automated 
pilot systems, fighting fires, and medical emergencies, con-
tinue to be central applications of basic DDM research, 
but new domains, such as cybersecurity, climate change, 
and forensic science, are emerging as other important 
applications.

Keywords: dynamic decision making, cognitive models, 
reinforcement learning, instance-based learning, decisions 
from experience

Introduction
Dynamic decision-making (DDM) research 

traditionally involves the study of complex tasks 
that are represented in computer simulations, 
often called microworlds (Brehmer & Dorner, 
1993; Gonzalez, Vanyukov, & Martin, 2005; 
Gray, 2002). Such tasks include commanding a 
group of firefighters in an unknown environment 
(e.g., Brehmer & Allard, 1991; Omodei & Wear-
ing, 1995), determining the procedures to follow 
in emergency situations (e.g., Joslyn & Hunt, 
1998), and managing scarce resources under 
time constraints and workload (Gonzalez, 2004, 
2005), among others. From this research, we 
have learned that making decisions in complex 
dynamic tasks is very challenging for humans. 
For example, people do not always improve their 
decisions with practice in a task (Brehmer, 1980), 
and their performance may remain suboptimal 
even with full and immediate feedback, unlimited 
time, and high performance incentives (Diehl & 
Sterman, 1995; Sterman, 1994). People are gener-
ally poor at handling systems with long feedback 
delays (Brehmer, 1992; Sterman, 1989), and they 
have difficulty learning in situations involving 
environmental constraints, such as workload and 
time pressure (Gonzalez, 2004, 2005; Kerstholt & 
Raaijmakers, 1997). Unfortunately, highlighting 
suboptimal performance and the poor strategies 
humans use in these tasks does not give insights 
on how people actually make decisions and the 
basic processes involved to be able to improve 
decision making (Gonzalez, Lerch, & Lebiere, 
2003; Hotaling, Fakhari, & Busemeyer, 2015).

Identifying the boundaries of decision mak-
ing in complex, dynamic tasks is only a motiva-
tion toward understanding how these difficulties 
emerge. A revelation of years of research with 
DDM tasks that are structurally complex (i.e., 
they consist of a large number of alternatives, 
high time constraints, and high uncertainty) and 
tasks that are structurally simple (i.e., they have 
few alternatives, no time constraints, and little 
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uncertainty) is that dynamics and complexity of 
human behavior exist even in tasks that appear 
simple. Simple tasks can have dynamic com-
plexity, which emerges from the relationship 
between choices and their effects over time, 
from the sequential nature of these interdepen-
dencies, and from the various lags between 
actions and their effect on the environment 
(Sterman, 1989; Gonzalez, 2017). Furthermore, 
dynamically complex tasks that are structurally 
simple are very common in many daily life situ-
ations. For instance, a diabetic patient may have 
difficulty controlling the different speeds and 
delays of choices he or she makes even when the 
alternatives are limited (e.g., taking insulin, tak-
ing some sugar by mouth or drink; Brunstein, 
Gonzalez, & Kanter, 2010); a witness viewing a 
police lineup may be influenced by the order in 
which the pictures are presented and by the time 
spent observing each individual picture, even 
when there are limited options in the lineup 
(Wells & Olson, 2003); and searching for the 
best partner is influenced by whom we meet and 
spend time with, before we make a marriage 
decision (Todd, 1997). The study of dynamic 
complexity helps in understanding basic deci-
sion-making processes, and it is perhaps the 
most important source of difficulty in DDM.

The simplification of dynamic tasks has 
occurred not only in laboratory studies but also 
in theoretical developments. Interests have 
emerged in using computational representa-
tions of cognitive processes to elucidate the 
cognitive mechanisms by which people make 
decisions in dynamically complex tasks (Buse-
meyer, 2002; Busemeyer & Pleskac, 2009; 
Busemeyer & Townsend, 1993; Dienes & Fahey, 
1995; Gibson, Fichman, & Plaut, 1997; Gonza-
lez et al., 2003). Although existing models differ 
in many aspects, they highlight common pro-
cesses in DDM: learning from exploration, expe-
riential-based decisions, sequential search for 
information and search through alternatives, and 
feedback processing and delays. Recent and future 
research should make connections between these 
processes and the behavior in dynamically com-
plex tasks.

In what follows, we provide a brief review of 
laboratory studies and theoretical developments 
focusing on those that contribute explanations 

and formalization of decision-making processes 
in dynamic environments. We start with a defini-
tion of DDM, present a synthesis of recent experi-
mental results, review major theoretical advance-
ments and computational approaches, and end 
with discussion of applications and trends in 
DDM research.

DDM: A Continuum of Dynamics 
and Complexity

Early definitions of DDM rely on a distinction 
between static and dynamic decisions (Edwards, 
1954; 1961; 1962; Rapoport, 1975; Toda, 1962). 
Static decisions are characterized by a single 
choice and are often conceptualized as linear 
processes—one observes explicit alternatives 
and makes a decision but cannot learn from 
the consequences of those decisions (Gonzalez, 
2012, 2013; Rapoport, 1975). Alternatives in 
typical static decisions are often described by 
probabilities and likelihoods. A choice between 
an alternative that gives $3 for sure and one that 
gives $4 with probability 0.8 and $0 otherwise 
is an example of a static decision.

Dynamic decisions, in contrast, involve a 
sequence of choices made in an environment 
that can change exogenously or as a function of 
previous choices and where decisions are 
sequentially linked to each other through their 
effects so that an action at a specific time directly 
or indirectly influences future actions (Brehmer, 
1992; Busemeyer, 2002; Edwards, 1962; Gon-
zalez, 2017). Consider our previous example on 
searching for the best partner. Whether or not we 
continue to see a person affects our chances to 
meet a better/worse candidate.

However, DDM exists as a continuum of 
dynamics and complexity. As described in 
Edwards’ (1962) taxonomy of DDM, dynamic 
environments may involve various degrees of 
change, where alternatives may vary indepen-
dently from external events or endogenously (as 
a result of decisions made previously). Dynamic 
environments vary in their inclusion of delayed 
feedback, interlinked actions and their effects 
over time, and time dependence, where the value 
of actions is determined by when an action is 
taken. The accumulation of these characteristics 
makes an environment dynamic and complex to 
different degrees. Although not all DDM tasks 
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involve all of these characteristics, every 
dynamic decision task must involve a series of 
choices taken over time to achieve some overall 
goal. Conceptually, dynamic decision making is 
a closed learning loop in which decisions are 
informed by the results of previous choices and 
their outcomes (Gonzalez, 2017; Gonzalez et al., 
2003).

Results of Behavioral Studies
A review of experimental research that helps 

in understanding basic decision processes can 
be classified into two groups: system control and 
search and choice. The system control approach 
presents DDM as a task aimed at maintaining a 
system in “balance” over time by reducing the gap 
between the state of the system and a target state. 
The search-and-choice approach presents DDM 
as a sequential task in which the goal is to maxi-
mize the total utility (e.g., score, reward, money) 
over the long run after a sequence of choices.

System Control
The control approach of DDM has its origins 

in research conducted in industrial, engineer-
ing, and managerial situations (Forrester, 1961; 
Pew & Baron, 1978; Rapoport, 1975; Sterman, 
1989; Wickens & Kramer, 1985). A common 
task is that of a manager controlling the level of 
inventory to a target or within acceptable ranges 
in a dynamic stock management task (Sterman, 
1989). This task can be accomplished by alter-
ing the inflows (e.g., fulfilled orders from sup-
pliers, which increase the stock) and outflows 
(e.g., sales to customers, which decrease the 
stock) to counteract the environmental distur-
bances that push the stock away from its desired 
value (e.g., delays from suppliers and irregular 
demands). Control tasks are common at the 
societal, organizational, and individual levels 
(Cronin, Gonzalez, & Sterman, 2009): human-
ity struggling to stabilize the concentration of 
CO2 in the earth’s atmosphere, decision makers 
making production and sales decisions to main-
tain an optimal inventory, and a diabetic patient 
making decisions about the consumption of 
sugar and use of insulin to maintain an optimal 
level of sugar in the blood.

Early research involved tasks with high struc-
tural and dynamic complexity (Sterman, 1989; 

Gonzalez et al., 2003). For example, the Water 
Purification Plant task involved a large set of 
alternatives, high time constraints, high uncer-
tainty, and large dynamic complexity given the 
interrelationship of decisions over time (Gonza-
lez, 2004, 2005). These tasks have shown that it 
is very difficult for humans to reach and main-
tain optimal control of a dynamic system, even 
after extended practice (Diehl & Sterman, 1995; 
Gonzalez, 2005; Paich & Sterman, 1993; Ster-
man, 1989, 1994). These difficulties arise from 
limited cognitive capacity to respond to delayed 
feedback (Diehl & Sterman, 1995; Sterman, 1994) 
and the tendency to rely on context-specific 
knowledge (Gonzalez, 2004, 2005; Gonzalez  
et al., 2003). Increased feedback delays between 
decisions and corresponding outcomes nega-
tively affect long-term performance in dynamic 
control tasks (Einhorn & Hogarth, 1978; Gonza-
lez, 2005; Kleinmuntz, 1985; Sterman, 1989). 
Some research has concluded that people do not 
learn to control dynamic systems because they 
misperceive the feedback (Sterman, 1989), 
whereas others suggest that outcome feedback 
may be insufficient and that other levels of feed-
back (e.g., process feedback, or an explanation 
of how the outcome emerged) are needed for 
people to learn to control a dynamic task (Gon-
zalez, 2005; Kluger & DeNisi, 1996; Lerch & 
Harter, 2001). Research also suggests that 
extended practice is often required for improved 
decision making (Gonzalez et al., 2003; Ker-
stholt & Raaijmakers, 1997; Martin, Gonzalez, 
& Lebiere, 2004), but it is clear that practice 
alone does not necessarily lead to better deci-
sions (Brehmer, 1980; Gonzalez, 2004). Clearly 
more research is needed to shed light in these 
processes.

To contribute to a better understanding of 
decision-making processes, recent research has 
reduced control tasks to their fundamental  
elements—one stock, one inflow, and one  
outflow—and asked for judgments about the rela-
tions between these elements over time (Cronin  
et al., 2009; Cronin & Gonzalez, 2007; Gonza-
lez & Dutt, 2011a; Gonzalez & Wong, 2012; 
Sterman, 2002; Sweeney & Sterman, 2000). 
Interestingly, researchers have found that even 
in these simplified problems, most people, often 
with high levels of education, perform poorly 
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(Cronin et al., 2009). A general difficulty, termed 
“stock-flow failure” (SF failure), seems to stem 
from the erroneous human tendency to expect 
that the results (i.e., stock behavior) should fol-
low the same trend of the behavior of the cause 
(i.e., flow behavior) (Cronin et al., 2009). For 
example, when students were asked to estimate 
the trend of CO2 emissions over time in order to 
control an increasing tendency of accumulation 
of CO2 in the atmosphere, they responded by 
drawing an increasing trend of emissions that is 
similar to the shape of CO2 accumulation over 
time (in reality, emissions would need to 
decrease to the same level of absorptions in 
order to control the CO2 accumulation; Dutt & 
Gonzalez, 2009).

Recent efforts present cognitive explanations 
of SF failure, suggesting the importance of 
human ability to observe similarities among 
experienced patterns of behavior (Fischer & 
Gonzalez, 2016; Gonzalez & Wong, 2012) and 
to make intentional effort to attend and to be 
aware of information, to effectively control a 
dynamic system (Weinhardt, Hendijani, Har-
man, Steel, & Gonzalez, 2015).

Search and Choice
This view of DDM originates from the work 

of Edwards (1962), the research paradigms that 
followed (Hogarth, 1981; Rapoport, 1975), and 
early work characterized by the use of simulated 
“microworlds” (Toda, 1962). Under this tradition, 
research investigated the effects of real-world 
characteristics of decisions, such as time con-
straints, feedback delays, and cognitive workload, 
and how people deal with such environmental 
constraints (Gonzalez, 2004; Kerstholt, 1994; 
Omodei & Wearing, 1995). In this sense, DDM 
search-and-choice research shares some connec-
tions with naturalistic decision making (NDM; 
Klein, 1989; Lipshitz, Klein, Orasanu, & Salas, 
2001): Both lines of research have focused on the 
effects of knowledge, experience, and intuition 
in decision making; they have investigated the 
effects of context and properties of a decision 
environment; and they have also investigated col-
lective behaviors rather than individual behavior 
alone. However, a discussion of the connections 
between NDM and DDM is beyond the scope 
of this manuscript (for earlier and recent related 

discussions, see Gonzalez et al., 2003; Gonzalez 
& Meyer, 2016; Gonzalez, Meyer, Klein, Yates, 
& Roth, 2013).

Recent developments in the field of behav-
ioral decision research provide new insights and 
opportunities for advancing our understanding 
of DDM processes (Gonzalez & Meyer, 2016). 
For example, the study of repeated and sequen-
tial decisions in the absence of explicit informa-
tion is now a growing area referred to as deci-
sions from experience (Hertwig, Barron, Weber, 
& Erev, 2004; Barron & Erev, 2003) as opposed 
to description-based decisions that present task 
information (explicitly) to participants. Again, 
the simplicity of new research paradigms is a 
major factor in this research advancement. Para-
digms have emerged to study the process of 
search of information over time (Gureckis & 
Love 2009b; Lee, 2006), and sequential choice 
from experience (Barron & Erev, 2003; Erev & 
Barron, 2005; Hertwig et al., 2004).

In sequential search, a decision is made at 
each stage of time whether to stop or to continue 
analyzing new options (as in deciding whether 
to purchase a house or to hire an applicant for a 
job; Lee, 2006). This research shows that people 
employ various strategies, such as searching for 
new options until the value of new options 
exceeds the advantages of the current option, or 
stopping the search when the current option 
meets the desirable characteristics (Lee, 2006; 
Todd, 1997). The costs and benefits of obtaining 
more information (Ravenzwaaij, Moore, Lee, & 
Newell, 2014) and the order of the cues consid-
ered are crucial to find the optimal stopping-
search rule (Lee & Newell, 2011; Ravenzwaaij 
et al., 2014).

Sequential choice paradigms often involve 
two alternatives, each representing unknown 
outcomes. People make repeated decisions and 
observe feedback regarding the outcomes. The 
sequential process of exploration is studied in 
sampling paradigms, where participants first 
explore the available options before they make a 
single consequential choice. The process of how 
people adapt their choices to changing environ-
ments is studied in repeated consequential 
choice paradigms, in which each selection con-
tributes to earnings and feedback after each 
choice (Gonzalez & Dutt, 2011b). This line of 
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research informs at least three factors that influ-
ence human exploration processes. First, it has 
been found that people engage in very limited 
exploration before making a choice (e.g., Her-
twig & Pleskac, 2008, 2010), but people search 
longer when they encounter a prospect of losses 
and when they experience variant relative to 
consistent environments (Mehlhorn, Ben-Asher, 
Dutt, & Gonzalez, 2014; Lejarraga, Hertwig, & 
Gonzalez, 2012). Second, people often fail to 
maximize payoffs, and rather, people often 
match their response probabilities to the payoff 
probabilities (Erev & Barron, 2005; Lejarraga, 
Dutt, & Gonzalez, 2012; Shanks, Tunney, & 
McCarthy, 2002). Third, people learn to adapt to 
changing outcomes and probability distribu-
tions, but adaptation can be slow, and it depends 
on cognitive parameters of the information 
experienced, such as the recency and primacy of 
the relative outcomes from different alternatives 
(Cheyette, Konstantinidis, Harman, & Gonza-
lez, 2016; Lejarraga, Lejarraga, & Gonzalez, 
2014; Rakow & Miler, 2009).

Theoretical Advancements and 
Computational Approaches

Simon (1955) and Edwards (1961) high-
lighted the importance of learning processes in 
DDM, with Edwards (1961, p. 489) suggesting 
that DDM and learning are closely related: “The 
distinction between dynamic decision processes 
and learning is one of emphasis, not content.” 
The learning process in DDM was formalized in 
instance-based learning theory (IBLT; Gonzalez 
et al., 2003). IBLT proposed that decisions in 
dynamic tasks are made by retrieving experi-
ences from past similar situations and applying 
decisions that worked well in the past. IBLT’s 
most important contribution is the description of 
the learning process and memory mechanisms 
by which experiences may be built, retrieved, 
evaluated, and reinforced during an interaction 
with a dynamic environment. IBLT used the 
memory mechanisms proposed by a well-known 
cognitive architecture, ACT-R (Adaptive Con-
trol of Thought–Rational; Anderson & Lebiere, 
1998), and their mathematical formulations are 
currently used in the implementation of computa-
tional models based on IBLT (i.e., IBL models) in 
tasks of various degrees of complexity, including 

control and choice tasks (Fu & Gonzalez, 2006; 
Gonzalez, 2013; Gonzalez & Lebiere, 2005; 
Martin et al., 2004).

A simple IBL model has emerged recently as 
a general approach for search-and-choice pro-
cesses, whereby the rewards are learned from 
experience in binary-choice tasks (Gonzalez & 
Dutt, 2011b; Lejarraga, Dutt, et al., 2012). In 
this model, a simulated human (i.e., an agent) 
facing a choice between two options at time t 
would choose the option that provides the best 
value from experience. This concept of best 
value is derived from functions of memory 
defined in ACT-R, including the frequency of 
experienced events, recency, and similarity and 
variability of those experiences. This model cap-
tures dynamic human behavior in a large variety 
of sequential decision-making tasks (Cheyette  
et al., 2016; Glöckner, Hilbig, Henninger, & 
Fiedler, 2016; Gonzalez & Dutt, 2011b; Her-
twig, 2015; Lejarraga et al., 2014; Lejarraga, 
Dutt, et al., 2012).

Another very common approach to model 
learning in DDM tasks is reinforcement learning 
(RL; Sutton & Barto, 1998). In a typical RL 
problem, an agent tries to find an association 
between an observed outcome and the earlier 
actions using either its memory or environmen-
tal cues. An agent takes an action at each state 
(e.g., selecting an option in a binary-choice 
task), and the environment delivers a reward or 
punishment based on the action-state pair and 
changes the current state of the agent. Impor-
tantly, like in IBL models, an RL agent tries to 
estimate the dynamics of the environment by 
experiencing it. An agent learns how good or 
bad each action is, based on the reward received. 
These characteristics might be probabilistic or 
deterministic and can be changed dynamically 
over time (Busemeyer & Bruza, 2012; Buse-
meyer & Pleskac, 2009). The goal of RL is to 
maximize the future rewards (estimating the 
value of each action based on the current reward 
and what could be expected in future). A particu-
lar type of RL algorithm, called model-based 
RL, is able to produce accurate accounts of 
human behavior in DDM (i.e., a navigation 
task), suggesting that people update their model 
of the environment after encountering changes 
to find the shortest path to the goal (Simon & 
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Daw, 2011). Similar demonstrations of the abil-
ity of RL learning models to account for human 
sequential learning decisions can be found in 
Gureckis and Love (2009a, 2009b).

Applications, Trends, and 
Conclusions

DDM is a growing field (Fischer, Holt, & 
Funke, 2015), with applications for the design 
of decision support tools and training interven-
tions in many domains. The use of microworlds 
and dynamic simulations continues to contribute 
insights in traditionally complex, dynamic tasks, 
including automated pilot systems (Jarmasz, 
2006), firefighting (Barber & Smit, 2014), and 
medical domains (Jones et al., 2006); and new 
applications have emerged, including cyberde-
fense and cybersecurity (Ben-Asher & Gonza-
lez, 2015; Dutt, Ahn, & Gonzalez, 2013; Proctor 
& Chen, 2015), climate change (Dutt & Gonza-
lez, 2009, 2012; Moxnes & Saysel, 2009), and 
forensic science (Brewer & Wells, 2006; Dror 
& Cole, 2010).

But perhaps the most common application of 
DDM research findings and theories is in the 
development of training principles that apply 
across domains. Training recommendations fol-
low the results from laboratory experiments 
using complex DDM tasks and from cognitive 
models, which suggest to (a) allow individuals 
to learn at a slow pace to help them adapt suc-
cessfully to greater time constraints, (b) train 
individuals with a diverse set of experiences in 
order to increase the possibilities of effective 
adaptation to novel situations, and (c) use reflec-
tion over an expert’s performance during train-
ing to reinforce instances of high quality instead 
of reflection of self-performance of outcome 
feedback, among others (see a detailed descrip-
tion of these applications in Gonzalez, 2012).

Although research in complex, dynamic tasks 
will continue to inform the boundaries of human 
behavior, scaled-down laboratory tasks (for 
instance, navigation in the real world is simpli-
fied to a computer game with a virtual room; 
Simon & Daw, 2011) have multiple benefits. 
This research trend in the use of scaled-down 
laboratory tasks has helped and will continue to 
contribute to an understanding of the processes 
emergent from dynamically complex tasks. By 

studying simple tasks, we can focus on the study 
of human decisions that depend on the relation-
ships between choices and their effects over 
time. Search-and-choice paradigms reveal 
essential processes of exploration among alter-
natives, decisions to stop search, search for 
information, and learning dynamics that will 
help in building computational models of DDM. 
Simplification is a tendency in theoretical and 
computational modeling efforts as well. A recent 
IBL model built to predict performance in indi-
vidual repeated binary-choice tasks (Gonzalez 
& Dutt, 2011b) has been applied to a variety of 
aspects of search-and-choice tasks at the indi-
vidual and team levels (Gonzalez, Dutt, & Lejar-
raga, 2011; Lejarraga, Dutt, et al., 2012), and 
RL, a simple representation of adaptive pro-
cesses, is also showing its utility in explaining 
human behavior in many DDM tasks.

In the future, we expect increased interest in the 
study of sequential search processes, human adap-
tation to changing environments, and dynamic 
control tasks. We also expect increased interest in 
systematically expanding the simple experimental 
paradigms and modeling approaches. Expansions 
of current research will address the challenges of 
naturalistic environments, such as design of mod-
ern intelligent systems and collaborative systems 
that can dynamically interpret and adapt to chang-
ing situations, learn to make decisions from expe-
rience, and act appropriately under adversarial 
situations in distributed environments.
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Key Points
•• Dynamic decision making (DDM) research is 

familiar to the human factors community, but it is 
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often studied with complex simulations represent-
ing highly complex tasks, which limits findings to 
the identification of human behavior problems in 
these tasks.

•• We present recent advancements in DDM that focus 
on understanding cognitive processes involved in 
dynamic tasks. A main contributor to the advance-
ment of research in DDM is simplifying environ-
ments while maintaining dynamic complexity.
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