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Soil and Groundwater Contamination

• Superfund Sites: >1300 sites (organic/metal/radioactive) 
• Brownfield Sites: ~450,000
• Major environmental justice issues

>900 remaining after 30 – 40 years of remediation
à Challenge of low-concentration large-volume plume



Environmental Remediation: Evolution

Sustainable Remediation Forum (SURF), "Integrating sustainable principles, 
practices, and metrics into remediation projects", Remediation Journal, 19(3), pp 5 - 
114, editors P. Hadley and D. Ellis, Summer 2009

Trade offs: 
Contaminant removal 
vs 
● Waste
● CO2 emission
● Energy Use
● Ecological Impacts
● Noise, Air pollution



Sustainable Remediation

Former Reilly Tar & Chemical Corporation Plant

Rocky Flats National Wildlife Refuge

● Intensive/invasive clean up  à Sustainable methods
● Minimize waste/pollution/energy-use/water-use/ecological 

damages 
● Biodegradation, immobilization
● Monitored natural attenuation
● Longer institutional control with alternative/attractive end-use 
à Long-term monitoring



Earth Systems Monitoring

o Multi-type multi-scale data
• Accuracy
• Coverage
• Footprints/resolution 

o ”Proxy” information
• Plants/topography ~ soil
• Electrical conductivity ~ 

contaminant concentration 
o Spatial-temporal correlation

• Data compression    
• Similar properties in vicinity



Challenges in ML/AI x Environmental Science

• Lack of training data
• Large uncertainty/variability 

•  Multiscale heterogeneity

Gelhar, 1986

•  Large data but little 
information content



Challenges in Physical Models: Predictability

e3sm.org

Amanzi-ATS

Global climate models

Watershed models

Contaminant transport models

- Parameterization/heterogeneity 
- Uncertainty quantification
- Inherit assumptions in models



Advanced Long-term Environmental Monitoring Systems

Sensing

Modeling

ML/AI

New paradigm for 
long-term monitoring

altemis.lbl.gov
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In situ Real-time Groundwater Monitoring

phone tower

Cloud
Storage

Computing

work
computer

well

Sensors

data logger
& modem

- Water Table
- pH 
- Redox
- Specific conductance (SC)

Contaminant concentrations ~ pH, WT, SC etc  

• Low-cost in situ sensors, wireless network, cloud computing
à  Autonomous continuous monitoring
à  Detect changes real-time = Early Warning
à  Reduce monitoring cost

(Schmidt et al., 2018)



In situ Real-time Groundwater Monitoring

Time [y]

Time [y]

• Confidence interval captures validation points
• Mean estimate captures the fluctuation
• Reduce #sampling from quarterly to every two years 

Specific Conductance

pH

U Groundwater Sampling Data

𝒚! = 𝑓(𝒚!"#) 	+ 𝜏 𝜏~𝑁(0, 𝜎2)
• Time evolution of contaminant concentration 

• Relationship to in situ datasets 

o Estimation of contaminant concentrations: {y1, y2,… yT}

* Normalized concentrations

𝒛$%,! = 𝑔$%(𝒚!) 	+ 𝜀$%
𝒛'(,! = 𝑔'((𝒚!) 	+ 𝜀'(

(Schmidt et al., 2018)

𝒑(𝒚!|𝒚!"#, 𝒛)







PyLenM: Python for Long-term Env. Monitoring



PyLenM: Supervised Learning

SC à H-3 Proxy-based H-3 map

Elevation Groundwater table
• Spatiotemporal Interpolation

• Groundwater table
• Contaminant concentration

• Proxy variables
• LiDAR elevation data
• Topographic metrics (slope etc)
• Distance from the source
• In situ measurable SC
à tritium concentration

• Comparison of multiple 
regression methods



PyLenM: Well Placement Optimization
Sub-selection of wells for 
long-term monitoring

Greedy algorithm
• Reference map created 

using all the wells
• Interpolation with one 

additional well at a time
• Find the well that 

minimize the overall 
error

Minimum-but-sufficient # 
wells
• Error convergence



Web-interface: Implementation



Contaminant Transport Modeling: Amanzi

Amanzi

Alquimia

Pflotran

…
Other

CrunchFlow

Enforces a signature for 
geochemical subroutines

Engine

Driver
Non-electrosta,c Surface 

Complexa,on

Electrostatic Surface Complexation
Flow and transport
- Richards’ equation
- Mimetic finite element method

Geochemistry

- Complex flow 
- Complex geochemical reactions 



SRS F-Area: Geochemical Model

Arora et al, 2017



3D Plume Modeling and Simulations
Helpful for understanding
- Residual contaminants under the 

basins and within the clay layer
- Climate change impact (Libera et 

al., 2019; Xu et al., 2022)

High computational burden
- >1M grid blocks 
- Complex geochemical reactions
- Up to 100s of simulations for UQ 

Challenging to fit at all the points 
- Geological heterogeneity
- Conceptual model error 



Simulation Intelligence: Simulations x ML/AI

Lavin, A., Zenil, H., Paige, B., Krakauer, D., Gottschlich, J., Mattson, T., ... & Pfeffer, A. (2021). Simulation intelligence: 
Towards a new generation of scientific methods. arXiv preprint arXiv:2112.03235.

Climate Change Impact on 
Groundwater contamination
à Emulator with Fourier Neural 
Operator

Extreme precipitation

Physics-informed interpolation
à Model-data integration with 
Bayesian hierarchical model

In collaboration with NASA Frontier Development Lab 
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Climate Change Impacts on Contamination

Extreme precipitation

Higher precipitation
- Re-mobilize residual 

contaminants? 
- Dilute concentrations? 
à Change management 

strategies?
à Change monitoring well 

configuration? 

Wang, L., Kurihana, T., Meray, A., Mastilovic, I., Praveen, S., Xu, Z., ... & Wainwright, H. (2022). Multi-scale Digital Twin: 
Developing a fast and physics-informed surrogate model for groundwater contamination with uncertain climate models. arXiv 
preprint arXiv:2211.10884.



When and where to make modification? 

Time projection

Climate scenarios

Subsurface properties

2020 2100

Dry Wet

Impermeable Permeable

Savannah River Site, South Carolina

Location 2080
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Climate Change Impacts on Contamination

Extreme precipitation

- But computation is pretty heavy
- We can’t run simulation on laptops

Wang, L., Kurihana, T., Meray, A., Mastilovic, I., Praveen, S., Xu, Z., ... & Wainwright, H. (2022). Multi-scale Digital Twin: 
Developing a fast and physics-informed surrogate model for groundwater contamination with uncertain climate models. arXiv 
preprint arXiv:2211.10884.
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Emulator/Surrogate Modeling

Parameters 
from PDF

{p1, p2….pN}

Simulations:

f = f(p)
{f1, f2,.. fN}

Regressions:

f ~ f(p)

Emulator 
predictions

f = femulate(p)

HPC
Clusters

Statistical representation of physical models
  



Parameter Details

Permeability upper layer

Porosity upper layer

Alpha inverse air entry suction

Sr residual water content

m m = 1-1/n, a measure of the 
pore-size distribution

Source 
concentration

Initial contaminant 
concentration 

Discharge rate
(Cap at 1988)

Source/cap discharge rate 
in volumetric water

Time-varying 
recharge

Climate data (precip. & ET)
(history, mid-century, late-
century)

Flow and reactive transport model in 2D
25

2D Flow and Transport simulator



An enhanced Fourier Neural Operator (Wen et al. 2022)
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Fourier 
Layer

U-Net 
Fourier 

Layer

Deep learning architecture: UFNO
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Data-driven & Physics-informed Loss 
termsA combined loss function to minimizes multiple errors à UFNOB

Mean Relative Error Derivatives No flow boundary

MCL: maximum contaminant level

Contaminant 
boundary
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U-FNOB and U-FNOB-Recurrent

(Recurrent)



Contaminant Concentration
TRUTH PREDICTION DIFFERENCE

Emulator-based Plume  Prediction
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Off-Line Climate Change Assessment

Emulator

Recharge
Plume 

Prediction
(mol/L)

Recharge2E-6 2E-5

 2E-6

Recharge2E-6 2E-5

1.2E-5

Recharge2E-6 2E-5

2E-5

Difference from 
2E-6 (LOW)

(mol/L)

HIGHLOW

HIGHLOW

HIGHLOW



Emulator

Recharge
Plume 

Prediction
(mol/L)

Recharge2E-6 2E-5

 2E-6

Recharge2E-6 2E-5

1.2E-5

Recharge2E-6 2E-5

2E-5

Difference from 
2E-6 (LOW)

(mol/L)

HIGHLOW

HIGHLOW

HIGHLOW

- Dilution/remobilization 
happen at the same time 

- Important to have 
distributed wells

Off-Line Climate Change Assessment



Comparison of Different Strategies
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R  
R  

• FNOB is better than FNOB-Recurrent



Full Time Series vs Recurrent
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R  
U-FNOB

U-FNOB-R

1985 2025

Changing the mid-century precipitation (kg-water m−2s−1) between 2020 and 2060 



Full Time Series vs Recurrent

34

R  
U-FNOB

U-FNOB-R

1985

Changing the mid-century precipitation (kg-water m−2s−1) between 2020 and 2060 

• FNOB changes plumes 
in the past

• Regression with full 
time-series does not 
know past/future

• Recurrent one is more 
realistic

à Different strategies for 
time-dependent 
parameters?  



Physics-informed Spatiotemporal Interpolation

Concentrations at Wells (2015)

• Ensemble simulations
  {y1, y2,… yT}

Wainwright et al., 2019

log(pCi/L) Interpolated Map log(pCi/L)

- Flow direction 
- Plume source

Reactive Transport Model

In situ Sensor Data



Advances in GP for Large Datasets



Bayesian Hierarchical Model for Physics-informed Interpolation

● Estimate the spatiotemporal distribution of contaminant concentrations y 
(ppm) conditioned on groundwater sampling data (zG) and in situ sensor (zS)

● Ensemble simulations of plume and concentrations: 𝝓 = 𝒇(𝐩)
● Address the bias and errors of simulations: 𝒚 = 𝒈 𝝓 + 𝜺

○ Probably not good for long-term prediction/extrapolation 
○ Good for improving the current interpolation

● Gaussian Process Model: 𝒚~𝑵(𝒈 𝝓 , 𝑪), 𝑪 = spatially	correlated	covariance	

𝑝 𝒚 𝒛) , 𝒛*



Bayesian Hierarchical Model for Physics-informed Interpolation

● Posterior distribution

𝑝 𝒚 𝒛! , 𝒛𝑺	 ∝ A𝑝 𝒛# 𝒚 𝑝 𝒛! 𝒚 𝑝 𝒚 𝝓 𝐩 , 𝜽	 𝑑𝜽𝑑𝐩

• Data models:
- 𝑝 𝒛# 𝒚 	: the correlation between sensor data and concentrations
  𝑝 𝒛# 𝒚 = 𝑁 ℎ(𝒚), 𝜏$ , 𝜏$ is the measurement error  
- 𝒛!: Concentrations plus i.i.d errors 

• Prior model: 
- 𝑝(𝜽) à GP parameters
- 𝑝(𝐩) à model parameters



Bayesian Hierarchical Model for Physics-informed Interpolation

● Ensemble simulations: {𝝓%, 𝝓$, … . , 𝝓&}
● Jeffrey’s prior for 𝜽

Algorithm 1: Sampling-Resampling Scheme
1. For k from 1 to N:

1.1. Read the k-th ensemble simulation fk.
1.2. Sample the hyperparameters 𝜽
1.3. Apply fvGP and estimate yk and likelihood

𝐿' = 𝑝 𝒛𝑮 𝒚)𝑝 𝒛𝑺 𝒚)𝑝 𝒚 𝝓, 𝜽)
2. Resample yk based on the likelihood Lk for the posterior distribution 



Physics-informed Spatiotemporal Interpolation

Performance Confirmation
- Confidence intervals
- Points not included in the estimation



Physics-informed Spatiotemporal Interpolation

Impact on Plume Extent: The integrate plume map capture 
the source locations, plume direction and dispersion 

Simple interpolation Integrated map



ML Pathway to Adaptation: Challenge

● Conceptual model development is difficult
○ Geological heterogeneity, unknowns 

● It is a sensitive topic
○ Failed weather prediction à 

○ Failed contaminant transport prediction à legal actions… 

○ QA/QC of codes  

● Regulations 

○ Processes/paperwork for sensor installment, monitoring 

modification 

🤷



ML Pathway to Adaptation: Opportunities
● Understand regulations

○ Stepwise implementation: in situ sensor deployment
○ Reducing sampling frequencies is easier 
○ Then reducing # variables and reducing # wells 

● Emphasize additional safety assurance
○ Continuous monitoring à early warning, explaining anomalies 
○ Guide monitoring strategies (e.g., climate change)

●  Autonomous/autonomous monitoring à AI-assisted monitoring 
○ Anomaly detection à instrument failure, system changes
○ Realistic plume visualization
○ Digital twin à simulate what can happen in the future 



Sensing

Modeling

ML/AI

altemis.lbl.gov



Distributed Sources: Agriculture Runoff

•  Runoff water may contain:
• Soil
• Nutrients: nitrogen, 

phosphorous, trace metals
• Pesticides: herbicides, 

insecticides, fungicides
•  Impacts on water quality:

• Decreased water quality
• Harmful algal blooms
• Fish kills



Distributed Sources: Mercury

The biggest single source of mercury 
is the burning of fossil fuels, 
especially coal, which releases 160 
tons of mercury a year into the air in 
the US alone. (Woods Hole Oceanographic Institution)

http://www.groundtruthtrekking.org/Graphics/MercuryFoodChain.html)

http://www.groundtruthtrekking.org/Graphics/MercuryFoodChain.html


Other Distributed Sources/Contamination



Environmental Science is Critical

• Our environment is more  
polluted/contaminated than people think

• Often substances that people don’t 
worry too much end up spreading out 
widely and impacting our life
•  Everyone needs to be more aware of 
pollution issues, and more vigilant to 
protect our health 



Open Data, Open Science

- Public database
- API 



Toward Citizen Science: K-12 Education

Noatak

Kozebue



Hands on Activities with Sensors



Sensor Technologies for Teaching



GP Data Integration for Air Quality

github.com/hmwainw/GP4AQ



Next Step
o Environmental Monitoring Network for 

rural America

o USGS Database does not cover rural regions
o Too remote
o Data quality concern

o Can high schools be the base for 
environmental network in rural regions? 

o Improve STEM educaIon 
o More college/PhD from rural regions!



Challenges….. Tech/AI in Environment/Climate

o Pollution monitoring is not exciting when 
nothing happens 

 à Attributes more relevant to daily life? 
 - River temperature for fishing?
 - Soil moisture sensors for gardening? 

o Students good at math/science are not interested 
in the environment and climate 

à Environmental data in math/statistics education?
 - Open data and problem sets? 
 



Summary
o Long-term monitoring of soil and groundwater contamination 

• Sustainable remediation: long-term institutional control
• Ensure the stability/safety of contaminated sites and detect anomalies 

o  ALTEMIS: Multiscale multi-type data integration
• Integration of proxy information (e.g., spatial data, in situ sensors)
• PyLenM: Framework from various data to ML and decision making
• Model simulations to inform monitoring and management

o Simulation Intelligence: Simulations x ML/AI
• U-FNO for emulating simulation results to understand climate change impact on 

residual contamination 
• Bayesian hierarchical models with GP for physics-informed spatial interpolation 

(physics-informed monitoring)
o  General contaminations: Democratizing environmental science 

• Citizen science for water/air quality, tackling environmental justice issues 
• AI/ML for environmental science 



Thank You!

Contact 
Haruko Wainwright
HMWainw@MIT.EDU
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