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At this point,  
are we done with cosmology?



Inflation:

Dark Matter:

Dark Energy:

The nature, properties, or origin of the field 
causing inflation are completely unknown

Is not even remotely understood.

What is known:  
only that it exists and gravitates

Inflationary-   CDMΛ



MODERN COSMOLOGY 

What is the nature of inflation?
What is “dark matter”?
What is “dark energy”?
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Matter power spectrum



STRONG GRAVITATIONAL LENSING

Formation of multiple images of a single distant object due to the 
deflection of its light by the gravity of intervening structures.

Distance ~ 5 Billion light years

Distance ~ 12 Billion light years





Two images of a 
background 

quasar

Lensing galaxy







Matter power spectrum







Foreground structure 

Use lensing to probe the distribution of matter in the lensing 
galaxies. 

Background source 

Use strong lensing as a cosmic telescope. 

Cosmology 

Use lensing to probe the cosmological parameters (H0) 

SCIENCE MOTIVATIONS FOR STRONG LENSING



L E N S I N G  A N A LY S I S

Data

1: Morphology of the 
background source  
(the true, undistorted image of 
the candle)

2: Matter distribution in the lens  
(the shape of the wineglass)

y = L(p)x + n

Source Parameters (linear)

Lens Parameters (non-linear) Noise

Data



LOOKING INTO THE FUTURE

In the next few years, we’re expecting to discover more 
than 170,000 new lenses. 



Methods for the future: 
How are we going to analyze 170,000 lenses?

Lens modeling is very slow.  

Simple lens model takes ~3 days     

=> 1,400 years !



ESTIMATING THE MATTER DISTRIBUTION PARAMETERS WITH CNNS

10 million times faster than traditional lens modeling. 
0.01 seconds on a single GPU

Hezaveh, Perreault Levasseur, Marshall, Nature, 2017



de-lensed image of 
background source?

UNDISTORTED IMAGE OF THE BACKGROUND SOURCE



PIXEL VALUES OF THE BACKGROUND SOURCE ARE LINEAR 
PARAMETERS
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de-lensed image of 
background source

UNDISTORTED IMAGE OF THE BACKGROUND SOURCE



THE RECURRENT INFERENCE MACHINE

Putzky & Welling, 2017



ESTIMATING THE BACKGROUND SOURCE IMAGES WITH  
THE RECURRENT INFERENCE MACHINE

Morningstar, Perreault Levasseur et al., 2019



Morningstar, Perreault Levasseur et al., 2019

UNDISTORTED IMAGE OF THE BACKGROUND SOURCE 
WITH THE RECURRENT INFERENCE MACHINE (RIM)



BACKGROUND SOURCE RECONSTRUCTION: 
COMPARISON TO MAXIMUM LIKELIHOOD METHODS

Morningstar, Perreault Levasseur et al., 2019



EXAMPLES OUTSIDE THE TRAINING DATA

Morningstar, Perreault Levasseur et al., 2019
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SIMULATED GALAXIES GENERATED 
WITH A VARIATIONAL AUTOENCODER

Alexandre Adam



SOLVING ENTIRE LENSING SYSTEMS WITH  
THE RECURRENT INFERENCE MACHINE

SOURCE

LENS

ℒ

dℒ
dxs

dℒ
dxL

Adam, Perreault Levasseur, Hezaveh, 2023



TRAINING ON HYDRODYNAMICAL SIMULATIONS

Adam, Perreault-Levasseur, Hezaveh., 2023



Adam, Perreault Levasseur, Hezaveh., 2023



WHAT AN ASTROPHYSICIST WANTS TO SEE:  
THE POSTERIOR (USING MCMC)

Hezaveh, …,LPL, et al. ApJ  2016



Perreault-Levasseur et al., 2017

UNCERTAINTY ESTIMATION WITH  
APPROXIMATE BAYESIAN NEURAL NETWORKS 

Morningstar et al., 2018



Variational Inference to Approximate 
Bayesian Neural Networks

Amortized. 

Requires few hundred forward passes at evaluation time (to collect samples). Still very fast. 

Marginalizes implicitly over parameters we do not wish to explicitly model. 

With good coverage probabilities, one can use importance sampling of the output distribution 
to get an unbiased posterior. (Provided one can actually write this posterior) 

Pros:

Caveats:
The variational distributions (Bernouilli) are extremely simplistic, therefore even if 
we attempt to use them to approximate the true weight distributions, that 
approximation could be bad and yield inaccurate uncertainties.  

CMB Cleaning IR Spectrometer De-noising

Same problem remains regardless of the variational distribution used: there is no way of 
quantifying how well we approximate the true weight distributions 



S imu la t ion -Based  in fe rence

Ronan 
Legin

Legin, Hezaveh, Perreault Levasseur, Wandelt 
NeurIPS  2021  -  Physical Sciences Workshop

P(θ | ̂θx)
x

̂θx

P(θ, ̂θ)



UNCERTAINTY ESTIMATION WITH  
SIMULATION-BASED INFERENCE METHODS 

Ronan Legin

Coverage probabilities

An example of the inference of the 
posterior of foreground variables

R. Legin, Y. Hezaveh, L. Perreault Levasseur, B. Wandelt, ApJ 2022



UNCERTAINTY ESTIMATION WITH  
SIMULATION-BASED INFERENCE METHODS

Use the power of ML to find a compress statics, and even if it is biased, we can get unbiased 
error estimate, the only drawback would be sub-optimal precision. (Provided the simulation pipeline is 
accurate!) 

A well-defined statistical framework that can: be relatively fast, deal with complex distributions, 
model joint posteriors. 

Use a neural density estimator to get the joint distribution p(data, parameter), no need for the 
epsilon parameter in ABC.  

Can change the prior from data point to data point without retraining the ML compressor. 

Once we have the posterior, can generate samples that are consistent with data (this is really 
important for ‘interrogating the black box’)

Pros:

Caveats:
Hard to marginalize implicitly over parameters, we need to explicitly model them. 

We don’t model the uncertainty of the density estimator itself. (But it’s a fairly simple ML model, 
and except for very pathological problems it’s reasonable to expect that we are in interpolation 
mode).  

Limited to low-dimensional posteriors (10s maximum). 

Requires an accurate simulation pipeline.



Latent variable

Hie ra rch i ca l  Bayes ian  in fe rence

We are interested in the parameters 
of the hyper distribution,

Posterior of individual 
measurements



Latent variable

Hie ra rch i ca l  Bayes ian  in fe rence

We are interested in the parameters 
of the hyper distribution,



Legin, Stone, Hezaveh, Perreault Levasseur, 
ICML  2022  -  Machine Learning for 
Astrophysics Workshop

Ronan 
Legin

Connor 
Stone

Hie ra rch i ca l  Bayes ian  in fe rence



Neura l  Ra t io  Es t imato r s

P(x, θ)
Class #1

{(x1, θ1), (x2, θ2), . . . , , (xN, θN)}

Class #2
{(x1, θ1), (x2, θ2), . . . , , (xM, θM)}P(x)P(θ)

r(x, θ) =
p(x, θ)

p(x)p(θ)
=

p(θ |x)
p(θ)Classify



H0 INFERENCE WITH TIME DELAY COSMOGRAPHY



T H E  H U B B L E  C O N S TA N T  
D I S C R E PA N C Y  B E T W E E N  M E A S U R E M E N T S

Adam G. Riess et al 2019 
ApJ 876 85



Ève Campeau-Poirier

H0 INFERENCE WITH NEURAL RATIO ESTIMATORS



H0 INFERENCE WITH NEURAL RATIO ESTIMATORS

Ève Campeau-Poirier

Campeau-Poirier et al. ICML 2023 ML4Astro Workshop



Es t imat ing  the  da rk  mat te r  pa r t i c le  tempera tu re   
w i th  Neura l  Ra t io  Es t imato r s

Coogan et al. , NeurIPS 2020 ML4PS Workshop
Anau Montel, Coogan et al. 2022

Adam 
Coogan



RATIO ESTIMATION METHODS

Can marginalize implicitly over large number of nuisance parameters

Pros:

Caveats:

Because we have marginalized, we’ve lost the capability to generate samples 
consistent with the observations. 

So far: no real way of quantifying the uncertainty of the ratio estimator itself. All the 
guarantees are in terms of convergence to a specific ratio in the limit of perfect 
training. Is this always realistic?



A previously unsolved problem in all of astrophysics (and other sciences): 

How do we infer the posteriors of high-dimensional parameters (e.g., an image or 
spectra)? 

Obstacles: 

1) How do we encode complex priors 

2) How we sample such high-dimensional posteriors (even if we could compute them)

TACKLING AN UNSOLVED PROBLEM:  
HIGH DIMENSIONAL INFERENCE



Can we learn our high-dimensional prior explicitly from data?  
i.e. can we learn a generative model that will produce samples from that 
distribution? 

Training data
{x1, . . . , xn,} ∼ πdata(x)iid

Density function 
pθ(x) ≈ πdata(x)

How can we do this from samples (e.g. data)? Modeling the density?

LEARNING THE PRIOR EXPLICITLY



Turns out that if I want to sample a distribution, the only thing I need to 
learn is its score, which does not include the normalization constant and 
only uses local information 

s(x) = ∇xlog(π(x))

Training data
{x1, . . . , xn,} ∼ πdata(x)iid

Density function 
pθ(x) ≈ πdata(x)
Score function

sθ(x) ≈ ∇log(π(x))

SCORE MODELING



SCORE-BASED MODELING

We model the score of the prior

sθ(x) ≡ ∇xlog pθ(x)

Alexandre Adam

Adam et al. NeurIPS 2022 ML4PS workshop



http://www.mjjsmith.com/thisisnotagalaxy/

Connor 
Stone

Smith et al. arXiv:2111.01713



SCORE-BASED MODELING
To sample from the posterior, the score of the likelihood is all that we need:

∇xlog p(x |y) = ∇xlog p(y |x) + ∇xlog pθ(x)
Alexandre Adam

We can calculate 
t h e l i k e l i h o o d 
score analytically 
if we assume it’s 
Gaussian.

T h i s i s t h e 
prior score we  
learnt from the 
training data
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To sample from the posterior, the score of the likelihood is all that we need:

∇xlog p(x |y) = ∇xlog p(y |x) + ∇xlog pθ(x)
Alexandre Adam

OUT OF DISTRIBUTION TESTS



COVERAGE PROBABILITY OF A CONFIDENCE INTERVAL IS THE 
PROPORTION OF THE TIME THAT THE INTERVAL CONTAINS THE 

TRUE VALUE OF INTEREST.

ARE THESE UNCERTAINTIES ACCURATE?

TRUE VALUE

68% 95%

FOR AN ACCURATE INTERVAL ESTIMATOR, THE COVERAGE 
PROBABILITY IS EQUAL TO ITS CONFIDENCE LEVEL



Lemos, et al. ICML 2023, 2302.03026

COVERAGE TEST FOR ACCURACY

Pablo Lemos



COVERAGE TEST FOR ACCURACY

Lemos, et al. ICML 2023, 2302.03026



DEALING WITH REALISTIC NOISE:  
BEYOND GAUSSIANITY

Alexandre Adam Ronan Legin

Legin, Adam, et al. 2302.03046



DEALING WITH REALISTIC NOISE: BEYOND GAUSSIANITY 
SLIC: SCORE-BASED LIKELIHOOD CHARACTERIZATION

Since we have learnt a generative model of the additive noise, it can now be used in a 
simulation pipeline to get new, independent realizations of noise:

Legin, Adam, et al. 2302.03046



Legin, Adam, et al. 2302.03046

DEALING WITH REALISTIC NOISE: BEYOND GAUSSIANITY 
SLIC: SCORE-BASED LIKELIHOOD CHARACTERIZATION







The institute’s mission is to contribute to 
breakthrough discoveries in astrophysics 
and cosmology by developing innovative 
data analysis and machine learning 
methods. It also aims to use unsolved and 
challenging data analysis problems in 
astrophysics to push the boundaries of 
machine learning and to make significant 
advances that can contribute to the 
successful and widespread use of machine 
learning in other fields of science.



ICML 
Machine Learning for 

Astrophysics

Physical Sciences
seminars

Ciela 



STRONG LENSING SIMULATION PIPELINE:  
CAUSTIC

A fast, AI-empowered, differentiable, extremely modular simulation pipeline for all 
your strong lensing needs.

1) Lens and source from analytic profiles or pixelated images/densities

2) Multiplane lensing

4) Fast microlensing simulations

5) Time-delays

3) Line of sight mass distributions

https://github.com/Ciela-Institute/caustic
https://github.com/Ciela-Institute/caustic-analyses

Adam  
Coogan
Adam  

Coogan
Connor 
Stone

Andi 
Filipp

Alex 
Adam

Misha 
Barth

Charles 
Wilson



(x0, y0) (x2, y2) (x3, y3)(x1, y1) (xN, yN)

Charles 
Wilson

SPEEDING UP THE SIMULATIONS



σ

μ

BAYESIAN NEURAL NETWORK 
(ALEATORIC UNCERTAINTIES)

THE NEURAL NETWORK PREDICTS ITS OWN UNCERTAINTIES



STANDARD NEURAL NETWORKS: 
WEIGHT HAVE FIXED, DETERMINISTIC VALUES

σ

μ0.2
0.4

0.7
0.1

0.6



σ

μ0.4
0.7

0.1

0.6

0.2

[USING VARIATIONAL INFERENCE]

BAYESIAN NEURAL NETWORKS: 
INSTEAD OF FIX VALUES, WEIGHTS ARE DEFINED BY PROBABILITY DISTRIBUTIONS



REPLACE         BY A DISTRIBUTION WITH A SIMPLE 
ANALYTIC FORM,        , (E.G., A GAUSSIAN). 

VARIATIONAL INFERENCE

σ

μ0.2
0.4

0.7
0.1

0.6



LIKELIHOOD-FREE INFERENCE

It’s possible to use deep learning for automated feature extraction 
and data compression, and then run your preferred LFI framework.  
=> Allows to both harness the power of NNs and be fully Bayesian, 
it’s the best of both world!!

Simulation-based inference: produce lots of simulations to populate 
a parameters-data graph, and at test time cut through that graph to 
get an accurate posterior 

    Parameter 

Da
ta     Observation 



}TRAIN A NEURAL NETWORK TO BE A GRADIENT DESCENT OPTIMIZER 
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TRAIN A NEURAL NETWORK TO BE A GRADIENT DESCENT OPTIMIZER 
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