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BICEPZ2 Collaboration/CERN/NASA

Image from


https://home.cern/news/series/lhc-physics-ten/recreating-big-bang-matter-earth

Collide Protons...

e The kinetic energy of two 88k tons aircraft carriers, each at 10km/h

e Packed into a transverse section of 16 micron

Video from YouTube


https://www.youtube.com/watch?v=FLrEghnKncA

To See What Happens

\WJHEN TWO APALES COLLIDE, THEY CAN
BRIEFLY FORM EXOTIC NEW FRUIT. PINEAPPLES
WITH APPLE SKIN. POMEGRANATES FULL OF
GRAPES. WJATERMELON-SIZED PEACHES.

\
THESE NORMALLY DECAY INTO A SHOUER OF
FRUIT SALAD, BUT By STUDYING THE DEBRIS,
WE CAN LEARN WHAT WAS PRODUCED

1
THEN, THE HUNT 1S ON FOR A STRBLE. FORM.

— ©

HOW NEW TYPES OF FRUIT ARE DEVELOPED
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Complex Experiments

Costly full simulation

Interrelation of many parameters

Large number of optimizable subdetectors

Complexity prevents from optimizing targeting final goals
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Robustness is not optimization

e 50+ years old detector design concepts served us well but may now be assisted
by Al

e Track first, destroy later B
- — = — Neutral Haron (e.j?ﬁi:.?&n)

e Redundancy in the detection

systems

©
e Symmetrical layouts m/i% )
o No guarantee of optimality ) E.mmg;ﬁc
: ‘ Bl o

e Subdetector-specific figures of T ’ o et ke nsprss

mer |t om ha om am am sm B 7m
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Optimal design requires domain
expertise

Automated Antenna Design with Evolutionary
Algorithms

Gregory S, Hornby
hornbydemail. arc.nasa. gows
University of California Santa Cruz, Mailtop 269-3, NASA Ames Research Center, Moffett Field, CA

Al Globus Derek S. Linden
San Jose State University JEM Engineering, 8683 Cherry Lune, Laurel, Maryland 20707
Jason D. Lohn

NASA Ames Research Cenier, Ml Stop 2669-1, Moffett Field, T4 04035

Whereas the current practice of designi by hand is severely limited b
it ia both time and labor intensive and requires a signi of d in ki =e,
evolutionary algorithms can be used to search the design space and aut ically find

"The current practice of designing and optimizing antennas by hand is limited in its ability
to develop new and better antenna designs because it requires significant domain
expertise and is both time and labor intensive.”

Slide by Lukas Heinrich at QCHS 2022. Referenced paper is doi:10.2514/6.2006-F2é&o Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 6 / 43


http://dx.doi.org/10.2514/6.2006-7242

Joint optimization: why?

e Yieldsin general different solution than optimization of individual features

o Both marginally and sequentially

argming,, (E(a:, y)) —+

L

argming (L(w, y)) :

41 b Joint max

-
argming, (E(a:, y)) — N ' . \

Marginal max

Y

2 i
argmin, (E(a:, y)) A
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Illustration (c) P. Vischia, book in preparation Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31--- 7/ 43



Large gains to be had

e MUonE: proposed 150 GeV muon beam experiment to be built at CERN
o Measure precisely the q2 differential cross section in electron-muon scattering

o 40 tracking stations and a calorimeter

e Dramatic improvement in the resolution on q2 even from a simple grid search

0.03
I-;- 2
o(q”)
0.025 I— Original MUonE design —_—
E qZ
0.02 — J
0.015 :—
0.01 |-
-  Optimized design (smart
0005 = parameterization, grid
-  search...)
0 T L L l L L L I L L L I L L L I L L L I L L L l L L L l
0.02 0.04 0.06 0.08 0.1 0.12 0.14

- q2
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https://doi.org/10.1016/j.physo.2020.100022
https://arxiv.org/abs/2203.13818

Different challenges require
different methods

~LHC
~Tomography
Time %
per S (Not to scale)
{ ]
sample I*\\%.%Mjf 3
Parameters

1. Grid/random search
2. Bayesian opt, simulated annealing, genetic algos, ...

3. *Gradient-based optimization (Newtonian, gradient descent, BFGS, ...)

Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 9/ 43



A moral imperative

Optimize... ..within constraints

e New large, long-term projects e Unprecedented global challenges

e Society less receptive to
fundamental research

e Push technological skills to the
limit

Temperature change in the last 50 years

2011-2020 average vs 1951-1980 baseline
05 -02 +0.2 +0.5 +1.0 +2.0 +4.0°C

[ |
<09 -04 +04 +09 418 436 +7.2°F

Maximum extraction of scientific value from the available resources

Image and déincept/nchi Dotigo2R2tUpdahd wttiid lasigpeeittSiviatdgnédreBantigle BipditB $ESGIRRS - 2023.03.31 --- 10/ 43


https://cds.cern.ch/record/2721370

Finite Budget: loss and constraints

e Optimization via gradient descent

o Target-oriented loss functions

e Constraints inserted as
penalization

o Additional term to the loss

L = L(physics output) a
+ A(ﬁ(cost)) 5:

=10)
=9

Loss (budget

0o 25 50 75 100 125 150 175 200
Cost

Topillustration from easyai.tech, bottom one from the MODE White Paper Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31--- 11/43


https://easyai.tech/en/ai-definition/gradient-descent/
https://arxiv.org/abs/2203.13818

Guarantee feasibility within
constraints

e Monetary cost

e Case-specific technical constraints

Loost — 0(9, Cb)

e 0:local, specific to the technology used (e.g. active components material)

o qb: global, describing overall detector conception (e.g. number, size, position of
detector modules)

e Fixed costs can be added separately to the loss function

Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31--- 12 /43



Optimization has practical
consequences

e Material availability (influenced e.g. also by wars) is also a concern, nowadays

= 9 0 @
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Figure 6: Road transport of a structure for the ATLAS air toroids. Photo reproduced
from Ref. [181].
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If you can't turn it on, it's not
optimal

Wosed
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Left image: 10.1016/j.phpro.2012.05.297, right image: 10.5194/wes-7-925-202Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31

Maybe we can optimize cable
layout

e Easily description as trees or graphs

e Alhough intrinsically discontinous and nonsmooth

o Mostly gradient-free tree searches

e Maybe further studies on the loss landscape can help in solving thisin a

differentiable way
I " .
S ol /x_-:’ :" me@;gg:‘ s Design of the Feasible design
‘; )\-{ ) e2 ez o orwpqidP(?n anly cable layout using WTs layout +
— ) r'na;imiJzat?on 0% global optimization Cable layout
”\\ the AEP LIy  MILP model IRR,(S)
e3d \\ = Task 1 Task 2
.
\.ff/ Figure 4. Approach 1: sequential design process for WTs and cable layout.
(a) The cable bundle T ; S sariblo s
s layou i easible design
optimization 5 Deb‘,gn_Of the T B
considering both cable layout using S layou
KE; global optimization Cable layout

IRR;(S) MILP model IRR,(S)

o ()
[ xl \ el /;2/\ 4

Task 1 Task 2
el Figure 5. Approach 2: simultaneous design process for WTs and cable layout.
|5 x4 ..
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https://doi.org/10.1016/j.phpro.2012.05.297
https://doi.org/10.5194/wes-7-925-2022

Assist the physicist with a
landscape of solutions

e Cannot parameterize
everything

e The optimal solution:
unrealistic

e Provide feasible solutions
near optimality

e The physicist will fine tune

Illustration (c) P. Vischia, book in preparation Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 16 /43



How far from optimality?

e Canwe define in a general way an acceptable increase in loss?

o Tradeoff performance/cost

Image from Li et al (taken as pictorial representation out of its original context) Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31--- 17 /43


https://arxiv.org/abs/1712.09913

Maybe we should marginalize?
What is Bayesian learning?

» The key distinguishing property of a Bayesian approach is marginalization
instead of optimization.

» Rather than use a single setting of parameters w, use all settings weighted by
their posterior probabilities in a Bayesian model average.

Andrew Wilson at Hammers&Nails 2022
7185
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How to optimize an experiment

e We detailed our ideain the MODE Contents

White Paper

1 Introduction 5

2 The State of the Art in Design Optimization and Differentiable

o 109-page document drafting the way Programming 9
forwa rd’ joint With com puter 3 Problem Description and Possible Solution 18

a o 4 Example Use Cases 33
SCIentIStS from prOton CompUted 5 System Architecture and Requirements 80
Tomography 6 Conclusions 83

o under revision for Reviews in Physics

ar 2022

1s-det] 22 M

Toward the End-to-End Optimization
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https://arxiv.org/abs/2203.13818
https://sivert.info/

Ingredients

e Multidimensional stochastic input variable  ~ f(z) from simulator of
physics process

o Potentially dependent on latent variables

e Sensor readouts z ~ p(z|z, 0)
e High-level features ( () = R|[z,0,v(0)]
e Low-dimensional summary for inference, s = A|[((0)]

e Optimization metric to find values of 0 that optimize inference made with s

From our white paper Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 20/ 43


https://arxiv.org/abs/2203.13818

Optimization recipe

Cost of the layout with
Depends on z and nuisances parameters theta

\ — Closed form
6= arg ming | LAQ) O e 0 (a)dods

Weight desirable goals while obeying cost constraints

e For example, to identify smuggled material in a container

L= (14 M) 53, [wip, (Z)megisel[s(2)]]

From our white paper Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 21 /43


https://arxiv.org/abs/2203.13818

Differentiable happiness

e Domain knowledge crucial to parameterize systems in an optimal way (pun

intended)
I I I ’ i y
-—.__,_I B | L_-_‘_‘_* Ax ﬁx -_-_'_'_“l — l_‘_-_‘_‘_‘) ______+______I|I_____——+
i I i i ~3> T
H e
I 1 | — T
1 ’ ! \“
§ I 1 \ .'\II. y W
1 | —

Figure 4: Left and center: a double-sided silicon strip sensor produces twice smaller
resolution Az on single-strip hit position for an orthogonally incident particle
if strips on the two sides are staggered by half the strip pitch. Right: the four
parameters affecting single-strip hit position resolution (tilt angle 8, strip pitch p,
sensor distance d, staggering s).

From our white paper Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31
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https://arxiv.org/abs/2203.13818

Automatic differentiation

3

z(x,y) =2z + zsin(y) +y

vy = y
e =Vg |
Vat+Va+Vsg y s

Forward mode Reverse mode

e Totheextreme, f : R — R™ e Totheextreme, f : R” — R

o Evaluates(%,...,%) e Evaluate Vf(x)(2L, ..., 2L)

0xy? Y Oz,

e Computational cost of calculating J ¢ (x) for f : R™ — R™ inR"™ x R™

O(n time(f)) O(m time(f))

Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 23 /43



When the likelihood is intractable

e p(-) notin closed form
o Samplez; ~ f(x)
o Then z; distributed as emulator, x; ~ F'(x;, 0)

A

Gupprox = argming L 7| L] A(R(2:)), c(9)]

e F'(-) nondifferentiable stochastic simulator

o Replace with local surrogate z = S(y, , #), where y describes the stochastic variation of
the approx distribution

o Learnsurrogate separately

o Descend to the minimum of approximated loss by following surrogate gradient

Vo (f(z\)) — % Z?:l VoL [A (R(S(yz', Li s 9))) ’ C(H)}

From our white paper Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 24/ 43


https://arxiv.org/abs/2203.13818

Advantages of surrogates

Subset of relatively simple class of functions (but they must be able to
reproduce F'(-) well)

Learn by training (hic sunt leones), (but N (eval F') > O(dim(0)))

Automatically get AD out of the box even if original F'(-) is not differentiable

Evaluation of surrogate (for optimization) much faster than evaluation of F'(+)

__________________ - -

E Sampled

(]

Simulator i

Inputs inputs and (Non differentiable) » Outputs E

____________________________________ i s
Train
Sampied Simulator surrogate

Parameters inputs and » : : » Outputs » Objective

parameters (Differentiable)

VR(yy)

Figure 1: Simulation and surrogate training. Black:
forward propagation. Red: error backpropagation.

Image from Shirobokoy,..., Kagan, ... et al. Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 ---25/43


https://arxiv.org/abs/2002.04632

Vast set of use cases

® Already exploring ¥ 4 Example Use Cases

¥ 4.1 Experiments at Accelerators

5 MUOI’] tomography 4.1.1 Particle Accelerator Design and Control
4.1.2 Calorimeter Optimization

o LHCb and CMS Calorimetry 4.1.3 Hybrid Calorimeter for a Future Particle Collider

4.1.4 Electromagnetic Calorimeter of a Muon Collider Experiment
o SWGO placement/geometry Of tanks 4.1.5 Optimization of the MUonE Detector

4.1.6 Searches for Milli-charged Particles
o LEGEND optimization ¥ 4.2 Astro-particle Physics and Neutrino Experiments

4.2.1 High-Energy Gamma-Ray Astronomy
4.2.2 Interferometric Gravitational-Wave Detectors
4.2.3 Radio Detection of High-Energy Neutrinos
¥ 4.3 Cosmic-Ray Muon Imaging
4.3.1 Figures of Merit
4.3.2 Parameters of the Optimization Task
4.3.3 TomOpt: Differential Muon Tomography optimization
4.3.4 Industrial Applications
4.3.5 Portable Modular Detectors for Flexible Muography
4.4 Proton Computed Tomography
4.5 Low-Energy Particle Physics
4.6 Error Analysis of Monte Carlo Data in Lattice QCD

From our white paper Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 26 / 43


https://arxiv.org/abs/2203.13818

Muon Tomography

e Want to infer properties (e.g. 3D
map of elemental composition) of _
unknown volume :

o Shipping container, archeological site,
nuclear waste dump, industrial
machinery, etc.

High X,

materlal

¢ Muons from cosmic rays traverse
us all the time

o Onaverage, 1 muon per cm? per

minute High X = low Low X = high
. . ) scattering scattering
o Change in kinematics provides handle
for inference on X X, = average distance between
scatterings

Figure from the TomOpt project Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 ---

27/43



Domain knowledge is not enough

e Domain knowledge typically provides heuristics based on proxy objectives

o Will likely have a budget

o Money, heat, power, positioning of ] : f E
detectors, imaging time... '/” ’ . — =
o Will likely have varying purposes ..
o Today want to spot uranium, *j : ; == =
tomorrow e.g. drugs E—Eﬁ j’
Example |I: Example 2:
Muons Muons
measured measured less
precisely but precisely but
less efficiently more
efficiently

Figure from the TomOpt project Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 28 /43



TomOpt

e Differential optimization of muon-tomography detectors (ongoing project)

o Giles C. Strong, Tommaso Dorigo, Andrea Giammanco, Pietro Vischia, Jan Kieseler, Maxime
Lagrange, Mariam Safieldin, Federico Nardi, Anna Bordignon, Haitham Zaraket, Max
Lamparth, Federica Fanzago, Oleg Savchenko, Nitesh Sharma

o Modular design in python, autodiff via PyTorch

e Inference chain as
differentiable pipeline

A

o Cancompute
p(Aoutput|Adetector parameters)

e Task as loss function

o Including target (e.g.
prediction uncertainty),
costs, constraints

L1
1]
1180

[ J
Bac.kp.ropagate and Known
optimize as usual volumes

§
:

Backwards pass

o Gradient descent

Figure from the TomOpt project Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 29 /43



Muon Generation

e Formulas by 2015 and 2016

models

e Account for Earth's curvature

¢ Code handles many muons at once

(bgtch)

Muon production geometry

»

e

Fig. 1. The relation of the observed zenith angle
of muons, €%, to the zenith angle at the muon
production point in the atmosphere, . R is the
radius of the Earth. Adopted from [3][4]

Left: Guan et al, Right: G.C.Strong

L1 AbsDalectorl ayer _; Passlvel ayer

init
‘ Volume

Simulation
|
nit imit
- _-add_scatters: —
| Track vars i
&uncs T e
o Batch
predictions. 1
EEE—
{.get_prediction - 7 weight Inference
T
iAbsDelecluanss |
Lo forward | Loss
Evaluation
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https://arxiv.org/abs/1509.06176
https://arxiv.org/abs/1606.06907
https://arxiv.org/abs/1509.06176

Volume Specification

¢ Volume made up of stacked layers

1 1
. | AbsMuonGenerator LLU — II LL‘_' — -1-'|
inz e Msbmeciatayer | U Fesseler |
TR init

e Passive layers scatter muon

o PDG and GEANT models both
available

Simulation

o Voxelized passive layers (x, y)

e Active layers record muon hits

o Parameterized efficiency and
resolution (cost, physics constraints)

Inference

Evaluation

Figure by G.C.Strong Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31--- 31/43



Monte Carlo Truth

e Per each scenario, can build voxelized random volumes
o Each voxel can be a different material

o tomoNext: material mixture per voxel

: m— Uranium
- BESRE  block
%ﬁ‘? hidden

: m amongst
rages scrap
g metal

Furnace
filled with
molten
metal and
impurities

FHTEI42II0  SETESEIILS  FMTEIAITHS  DETAS4IIi0  OETEI4IIN0 ATEEAITF0

True

Figure by G.C.Strong Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 32/ 43



Make muon hits differentiable

e Associate a distribution to resolution and efficiency
o e.g. Gaussian centered on panel and width equal to panel span

o p.d.f. of the muon position is now differentiable

e Further generalization: Gaussian Mixture models

Both muons

recorded, but 20 105
with different 15 -
resolutions 10 -
05
060
00
045
05
f. 10 0.30
-1.5 015
2.0 0.00
-2 -1 1] 1 2

Plot: Max Lamparth

Figure by G.C.Strong Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 33 /43



From hits to tracks

e Analytic maximum likelihood fit e POCA (POint of Closest Approach)
o considering uncertainty and o assume one scatteringin one point
efficiency of hits

o invert model to compute X
o fully differentiable w.r.t. detector

parameters o average X per voxel

e Provides track parameters and
their uncertainties

.AbBMuonGaneramr | |J|‘ |J|
: <l AbsDetectorLayer «I Passivelayer

Block of lead
(X,=0.005612m)
Surrounded by
beryllium
(X,=0.3528m)
Predictions highly
biased to
underestimate X0

[ penerate_selin) |

n muens
i oxyome | bl Lead block clearly
g visible
MuonBatch but high z uncertainty
TR in scatter location
causes ‘ghosting’
L above and below
—

Prediction - True

[nbma:a:r.url.uss |
‘ { forward '— Loss ~

Figure by G.C.Strong Piaar:g“\%schia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31
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Volume Inference with Expectation
Maximization

e [terative algorithm 1) Gather measurements of scattering and

momentum for each muon i=1 to M:
. . (AG,, Ay, Az, Ay.pf},-.
o estimate scatter denSIty based on 2) Estimate geometry of interaction of each muon

current estimate of the image with each voxel j=1 to N: (L, T)i;.

3) For each muon voxel pair, compute the weight
g . matrix: W;; using (24).

© uDdate estimate of the Image based 4) Initialize the scattering density in each voxel with

on the estimated scatter density a guess : \j old-
5) Do until (stopping criteria)

a) For each muon, compute En‘l- using (29) and
taking the inverse.
b) For each muon voxel pair, compute the con-
ditional expectation terms: S;; using (43).
c) Compute \j ey using (38)
d) Set Ajoig = Ajnew for all voxels.
6) End do

Summary of the EM algorithm for muon tomography. Schultz
et al. 2007

Figure 2: Ilustration of commonly used algorithms for reconstructing images in
muon scattering tomography. Barnes et al. 2023

Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 --- 35/43



EM preliminary performance

Composite-material:
Air (303.9), Al (0.089), Fe (0.0176), Pb (0.0056), U (0.0031)

Haatmaps o Radiation Leegeh for Evant 30

Iteration 29
u
2.5 i
Fe
et Al
Air
2.0
2151
w
&
&
Hasmape ofRakatan Lergkh o, P, F, K, A
4 I
|
E ik fas i
-1 n
: g e S 2 0 :
B B ¢ Log( Radiation Length (X0) )

B3d1428703 93133a3z08783 e133438703
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Volume inference

e The main boundary is that inference algorithm must be differentiable

e Basic approach of inverting scatter

model to compute X is highly
biased

e Maybe a task-specific summary
statistic would work better

Figure by G.C.Strong

L AbsDetectorLayer | PassiveLayer

| AbsMuanGenerator
L ; |

{_.penerals_seln)

n Muons
L xypig | Volume
h H’ : b= forward
) init - .
MuonBatch
—" hits
i Simulat
! !
— |
“'"'H'"‘-H.,_
o \m.\,.
Al | | e
|| Track vars ||

| &uncs

AbsDetectorLoss

L= forward | — Loss
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It's all about summaries

e Promising performance

e Muon track quantities
differentiable

o can compute uncertainties due to
spatial resolution

o useful for aggregating

e Summary can be learned

o Graph neural network (see
G.C.Strong's talk)

Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31 ---
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Voxel-wise
GNN
prediction for
material class
(dedicated talk)

Voxel X0 predictions
High density block
Low density background

Pwa cl on

Dedicated summary-statistic for

classifying volumes with uranium blocks
200

No uranium
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https://indico.cern.ch/event/1078970/timetable/?view=standard#42-two-level-graphs-for-muon-t

Optimization

e Regular gradient descent of a loss function
o account for cost of the detector and other constraints

o standard optimisers to update detector parameters

AbsMuonGenerator |J. |
L — _! AbsDatectorl ayar ] PassiveLayer
F y init
/' nmuons
s/ | Voume
‘J—' > forward —
g3
M =1 v
=
" hils
s Simulation
— T
int nat
| Ab A : ADEVoILmeIoH
" | S
!I Track vars - i =
&uncs M CE———]
T—— Baich
Inference
Evaluation

Figure by G.C.Strong
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Pipeline

Uncertainties computed as quadrature sum of products of input uncertainties and
jacobians of outputs w.r.t inputs

bian(var, dep_vars

torch.c r ons(torch.arsz (0, dep_vars_unc.shape[-1])
jacl idxs] dep_vars_unc| idxs] d
15 var_unc = unc_2.sum(-1).sqgrt
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Encouraging results

e [nferencevia
low-dim summaries

e E.g.identify uranium
in container
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Material from Tomopt draft paper



The MODE Collaboration

https://mode-collaboration.github.io/

e Joint effort (created 11.2020) of particle physicists, nuclear physicists,
astrophysicists, and computer scientists

AL INFM and Universita of Padova Dr. Tommaso Dorigo, Dr. Pablo De Castro Manzano, Dr. Federica Fanzago, Dr. Lukas Layer, Dr, Giles Strong,
Dr. Mia Tosi, and Dr. Hevjin Yarar

At Université catholique de Louvain Dr. Andrea Giammanco, Prof. Christophe Delaere, Mr. Maxime Lagrange, and Dr. Pietro Vischia

At Université Clermont Auvergne, Prof. Julien Donini, and Mr. Federico Nardi (joint with Universita di Padova)

At the Higher School of Economics of Moscow, Prof. Andrey Ustyuzhanin, Dr. Alexey Boldyrev, Dr. Denis Derkach, and Dr. Fedor Ratnikov
At the Instituto de Fisica de Cantabria, Dr. Pablo Martinez Ruiz del Arbol

At CERN, Dr. Jan Kieseler, Dr. Sofia Vallecrosia

At University of Oxford Dr. Atilim Gunes Baydin

At New York University Prof. Kyle Cranmer

At Université de Ligge Prof. Gilles Louppe

At GSI/FAIR Dr. Anastasios Belias

At Rutgers University Dr. Claudius Krause

At Uppsala Universitet Prof, Christian Glaser

At TU-Minchen, Prof. Lukas Heinrich and Mr. Max Lamparth

At Durham University Dr. Patrick Stowell

At Lebanese University Prof. Haitham Zaraket

At Technische Universitaét Kaiserslautern Mr. Max Aehle, Prof. Nicolas Gauger, Dr. Lisa Kusch At Technische Universita&t Worms Prof. Ralf
Keidel

At Princeton University Prof, Peter Elmer

At University of Washington Prof. Gordon Watts

At SLAC Dr, Ryan Rousse|

The Scientific Coordinator of the MODE Collaboration is Dr. Tommaso Dorigo, INFN-Sezione di Padova
The Steering Board of the MODE Collaboration includes:

» Prof. Julien Donini, UCA

+ Dr. Tommaso Dorigo, INFN-PD

+ Dr. Andrea Giammanco, UCLouvain
+ Dr. Fedor Ratnikov, HSE

+ Dr. Pietra Vischia, UCLouvain

Pietro Vischia - Optimizing Experiment Design with Machine Learning - STAMPS Seminars - 2023.03.31--- 42 /43


https://mode-collaboration.github.io/

Series of yearly workshop

e Firstinstallment in Louvain-la-Neuve (Belgium)

e Second installmentnt in Kolymbari (Greece)

o 37 talks, 9 posters, one data challenge with prizes, recordings will be online soon

e You are all invited to the Third MODE Workshop, to be held in Princeton (USA)

b JEN&&; —_— Third MODE Workshop on
Differentiable

@ ms Programming for
DE Experiment Design
S\ Princeton University
\ AP g = & 24-26 July, 2023

: 2 L
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