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Surrogates as statistical models of computer experiments

Surrogates are meta-models of computer
experiments.

Surrogates are used to make predictions
with appropriate uncertainty
quantification (UQ).

As simulations become more complex,
surrogate models must keep up.
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“Shallow” Gaussian process (GP) surrogates

The typical surrogate model is a GP

• nonlinear

• nonparametric (mostly)

• adept at uncertainty quantification

A GP assumes a MVN prior

Y ∼ N (0,Σ(X ))

All of the “work” is in the covariance

Σ(X )ij = τ2
(
k

(
||xi − xj ||2

θ

)
+ gIi=j

)

Higdon (2002), Virtual Library of Simulation Experiments (VLSE)
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“Shallow” Gaussian process (GP) surrogates

Conditioned on observed data (X ,Y ) and
hyperparameter settings, posterior
predictions at locations X follow

Y (X ) | X ,Y ∼ N (µ?,Σ?)

where

µ? = Σ(X ,X )Σ(X )−1Y

Σ? = Σ(X )− Σ(X ,X )Σ(X )−1Σ(X ,X )

Hyperparameters may be estimated
through MLE or sampled through MCMC.
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“Shallow” GP surrogates are limited by stationarity

Approaches to modeling non-stationarity

• Non-stationary kernels (Paciorek & Schervish, 2003; Higdon et al., 1999)

• Partition/Local GPs (Gramacy & Lee, 2007; Gramacy & Apley, 2015)

• Deep GPs (Damianou & Lawrence, 2012; Schmidt & O’Hagan, 2003)
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DGPs are functional compositions of GPs

Y1 ∼ N (0,Σ(X )) −→ Y2 ∼ N (0,Σ(Y1)) −→ Y3 ∼ N (0,Σ(Y2))
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Intermediate Gaussian layers are unobserved/latent

We represent a two-layer DGP prior as

Y |W ∼ N (0,Σ(W ))

Wk
ind∼ N (0,Σ(X )) ∀ k = 1, . . . , p.

Posterior inference requires

L(Y | X ) ∝
∫
L(Y |W )L(W | X ) dW

To encourage identifiability and parsimony, we impose

• Unit scale and noise-free latent W

• Conditional independence among nodes of W

• Isotropic length scales (single θ for all dimensions of X and W )
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Direct posterior inference for DGPs is intractible

Direct posterior inference is intractible due to the latent layer W .

L(Y | X ) ∝
∫
L(Y |W )L(W | X ) dW

Methods for approximate DGP inference:

• Variational inference
(Damianou & Lawrence, 2012; Salimbeni & Deisenroth, 2017; Marmin &
Filippone, 2022)

• Expectation propogation (Bui et al., 2016)

• Hamiltonian Monte Carlo sampling (Havasi et al., 2018)
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Direct posterior inference for DGPs is intractible

Direct posterior inference is intractible due to the latent layer W .

L(Y | X ) ∝
∫
L(Y |W )L(W | X ) dW

To prioritize UQ, we embrace a fully-Bayesian MCMC inferential scheme.

• Metropolis-Hastings sampling of covariance hyperparameters

• Elliptical slice sampling of latent Gaussian layers (Murray et al., 2010)

• Iteration in a Gibbs scheme
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Elliptical slice sampling provides efficient mixing

Also used for stochastic imputation (Ming et al., 2021)
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Elliptical slice sampling provides efficient mixing

R> library(deepgp)

R> fit <- fit two layer(x, y, nmcmc = 10000)

R> fit <- trim(fit, 5000, 5)

R> fit <- predict(fit, x pred)
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Preview of DGP predictive prowess

2-dimensional G-function

Marrel et al. (2009), VLSE
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Preview of DGP predictive prowess

4-dimensional G-function (20 reps)

• RMSE = root mean squared error

• CRPS = continuous rank probability score (Gneiting & Raftery, 2007)
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Deep Gaussian processes - Summary

• Why?
• Non-stationary flexibility while maintaining the predictive prowess and uncertainty

quantification of “shallow” GPs

• What?
• Functional compositions of Gaussian layers
• Intermediate layers are latent/unobserved

• How?
• Bayesian MCMC hinging on elliptical slice sampling of latent layers
• Implementation in the deepgp package
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Statistical models are only as good as their data

While a DGP has the flexibility to address non-stationarity, the data must reveal it.

• Strategically choose input configurations to maximize learning from a limited
budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer, & Wycoff, 2022).

Deep Gaussian Process Surrogates for Computer Experiments 20 / 50



DGPs Active Learning Vecchia Concluding

Statistical models are only as good as their data

While a DGP has the flexibility to address non-stationarity, the data must reveal it.

• Strategically choose input configurations to maximize learning from a limited
budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer, & Wycoff, 2022).

Deep Gaussian Process Surrogates for Computer Experiments 20 / 50



DGPs Active Learning Vecchia Concluding

1 Deep Gaussian Processes

2 Active Learning
Why?
What?
How?

3 Vecchia Approximation

Deep Gaussian Process Surrogates for Computer Experiments 21 / 50



DGPs Active Learning Vecchia Concluding

Active Learning/Sequential Design through greedy acquisitions

When computational costs are high, we may make the most of a stringent simulation
budget through greedy acquisition: sequential design.
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Active Learning/Sequential Design through greedy acquisitions

Y (x) | Xn,Yn ∼ N
(
µ(x), σ2(x)

)
for

µ(x) = Σ(x ,Xn)Σ(Xn)−1Yn

σ2(x) = Σ(x)− Σ(x ,Xn)Σ(Xn)−1Σ(Xn, x)

Given augmented inputs Xn+1 = {Xn, xn+1}, the variance becomes

σ2n+1(x) = Σ(x)− Σ(x ,Xn+1)Σ(Xn+1)−1Σ(Xn+1, x)

We choose acquisitions to minimize the posterior predictive variance.

xn+1 = argmin
xn+1

IMSE(xn+1) where IMSE(xn+1) =

∫
σ2n+1(x)dx

For faster computation, we also utilize the sum approximation (Cohn, 1994).

xn+1 = argmax
xn+1

ALC(xn+1) where ALC(xn+1) ∝ −
∑

x∈Xref

σ2n+1(x)
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Active Learning/Sequential Design through greedy acquisitions

If the surrogate is stationary, sequential designs will end up “space-filling.”
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Active Learning for DGPs

Novel inputs x? are mapped to hidden layer w?(t) using typical GP prediction.

Criteria (IMSE/ALC) are calculated for w?(t) and averaged across iterations.

R> fit <- fit two layer(x, y)

R> imse <- IMSE(fit, x candidates)

R> alc <- ALC(fit, x candidates)
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DGPs depart from space filling and outperform on RMSE/SCORE

plot of ESS samples

Deep Gaussian Process Surrogates for Computer Experiments 27 / 50



DGPs Active Learning Vecchia Concluding

DGPs depart from space filling and outperform on RMSE/SCORE
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Satellite drag computer simulation

• Test Particle Monte Carlo (TPM) simulator developed at LANL (Sun et al., 2019)
• Inputs: 7 configuration variables, satellite mesh, atmospheric composition
• Goal: RMSPE below 1% starting on a restricted domain
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Active Learning for DGPs - Summary

• Why?
• When computer simulations are expensive, the “budget” of evaluations is limited

• What?
• Sequential selection of inputs using greedy acquisition criteria
• IMSE or ALC (see Gramacy, Sauer, & Wycoff, 2022 for Expected Improvement)

• How?
• Map inputs through hidden layers and evaluate criterion on mapped values
• Sequential selections depart from space-filling and focus on regions of interest
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Statistical models are only as good as their data

While a DGP has the flexibility to address non-stationarity, the data must reveal it.

• Strategically choose input configurations to maximize learning from a limited
budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer & Wycoff, 2022).

• Deploy a space filling design that is large enough to pick up on changes in the
response surface (Sauer, Cooper & Gramacy, 2022).

Large datasets present computational bottlenecks for GP inference (O(n3)).

L(Y | X ) ∝ |Σ(X )|−1/2 exp

(
−1

2
Y>Σ(X )−1Y

)
These are compounded in a Bayesian DGP setting.
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Inducing points are popular, but not effective

Competing implementations for DGP inference ...

• Variational inference
(Damianou & Lawrence, 2012; Salimbeni & Deisenroth, 2017; Marmin &
Filippone, 2022)

• Expectation propogation (Bui et al., 2016)

• Hamiltonian Monte Carlo sampling (Havasi et al., 2018)

All (but one) use inducing point approximations to handle large data sizes (Snelson &
Ghahramani, 2006; Banerjee et al., 2008):

• observe covariance through fixed set of “knots” which are tricky to place and
result in blurry predictions (Garton et al., 2020; Wu et al., 2022).

Marmin & Filippone (2022) utilize random feature expansions.
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Vecchia approximation from conditional distributions

Any joint distribution may be represented as a product of conditional distributions, i.e.

f (y3, y2, y1) = f (y3 | y2, y1)f (y2 | y1)f (y1).

In general,

L (Y ) =
n∏

i=1

L
(
yi | Yc(i)

)
for c0 = ∅ and ci = {1, 2, . . . , i − 1} ∀ i = 2, . . . , n.

The Vecchia approximation (Vecchia, 1988) instead takes the subset

ci ⊂ {1, 2, . . . , i − 1} of size |ci | = min(m, i − 1).
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Vecchia approximation of GPs

In a typical “shallow” GP setting we have

L (Y ) =
n∏

i=1

L
(
yi | Yc(i)

)
,

where

L(yi | Yc(i)) ∼ N1(µi (X ), σ2i (X )) for

Bi (X ) = Σ(xi ,Xc(i))Σ(Xc(i))
−1

µi (X ) = Bi (X )Yc(i)

σ2i (X ) = Σ(xi )− Bi (X )Σ(Xc(i), xi ).

This converts an O(n3) computation into n-many O(m3) computations.

Stein et al., 2004; Datta et al., 2016; Stroud et al., 2017; Finley et al., 2019; Katzfuss & Guinness
2020, 2021
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Vecchia approximation induces sparsity in precision matrix

The Cholesky decomposition of the precision matrix is
sparse.

Y ∼ N
(

0,Σ = Q−1 = (UU>)−1
)

The upper triangular U matrix has closed-form

U ji =


1

σi (X ) i = j

− 1
σi (X )Bi (X )[#j ∈ c(i)] j ∈ c(i)

0 otherwise

whose entries may be populated in parallel.

m = n − 1

m = 2

Katzfuss & Guinness (2021, Proposition 1)
Deep Gaussian Process Surrogates for Computer Experiments 37 / 50



DGPs Active Learning Vecchia Concluding

GP tasks hinge on the sparse U matrix
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Vecchia-approximated DGPs

Recall our “un-approximated” DGP model

Y |W ∼ N (0,Σ(W )) Wk
ind∼ N (0,Σ(X )) ∀ k = 1, . . . , p.

In our DGP-Vecchia model, we impose a Vecchia approximation at each GP

Y |W ∼ N
(

0, (UwU
>
w )−1

)
Wk

ind∼ Nn

(
0,
(

(U
(k)
x )(U

(k)
x )>

)−1)
∀ k = 1, . . . , p.

Within our DGP MCMC algorithm, we replace every (i) likelihood evaluation, (ii) prior
sample, and (iii) GP prediction with its Vecchia-approximated counterpart.

R> fit <- fit two layer(x, y, vecchia = TRUE)

R> fit <- predict(fit, x pred)
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Ordering/conditioning specifications

We utilize

• Random orderings at each Gaussian layer (Guinness, 2018; Wu et al., 2022)

• Nearest-neighbor conditioning sets (Datta et al., 2016)

• Updating of conditioning sets based on learned latent layer warpings
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Computation scales linearly
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Deep and shallow competitors

• DGP DSVI: “doubly stochastic” VI (Salimbeni & Deisenroth, 2017)
• utilizes inducing points

• DGP HMC: Hamiltonian Monte Carlo (Havasi et al., 2018)
• utilizes inducing points

• DGP VEC: our Vecchia-approximated ESS (Sauer, Cooper, & Gramacy, 2022)

• GP: full un-approximated GP (when feasible)

• GP SVEC: Scaled Vecchia “shallow” GP (Katzfuss et al., 2020)
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DGP-Vecchia outperforms both deep and shallow competitors

4-dimensional G-function (20 reps)

simulation with noise larger scale simulation
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Satellite drag computer simulation

• Same TPM simulator, bigger data set/domain

• Same Goal: RMSPE below 1%

DGP DSVI and DGP HMC omitted from figure with RMSPE’s 30-35%
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Vecchia approximation for DGPs - Summary

• Why?
• Cubic computational bottlenecks, compounded in DGP MCMC

• What?
• Imposing sparsity in the precision matrix (and its Cholesky decomposition)
• Maintaining global scale

• How?
• Same DGP MCMC scheme with Vecchia-approximation for each GP component
• Random ordering at each layer
• Nearest-neighbor conditioning, optionally adjusted based on learned latent layer
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Thanks!

Everything you saw today is supported by

• deepgp for R on CRAN (Sauer, 2022)

• and a git repo of examples:

https://bitbucket.org/gramacylab/deepgp-ex/

Many thanks for your attention!
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Elliptical slice samples for 1d piecewise function

go back
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Simulation with noise

4-dimensional G-function with white noise

go back
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Larger scale simulation

6-dimensional G-function

go back
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