Deep Gaussian Process Surrogates for Computer Experiments

Robert B. Gramacy with Annie Sauer and Dave Higdon and Andy Cooper

Virginia Tech Department of Statistics

January 2023

イロト イポト イヨト イヨ

Concluding 0000

Where are we going?

 Deep Gaussian Processes Why? What? How?

2 Active Learning Why? What? How?

3 Vecchia Approximation Why?

What? How? Deep Gaussian Processes Why? What? How?

2 Active Learning

③ Vecchia Approximation

Concluding

Surrogates as statistical models of computer experiments

Surrogates are meta-models of computer experiments.

Surrogates are used to make **predictions** with appropriate **uncertainty quantification (UQ)**.

As simulations become more complex, surrogate models must keep up.

The typical surrogate model is a GP

- nonlinear
- nonparametric (mostly)
- adept at uncertainty quantification

A GP assumes a MVN prior

 $Y \sim \mathcal{N}(0, \Sigma(X))$

All of the "work" is in the covariance

$$\Sigma(X)^{ij} = \tau^2 \left(k \left(\frac{||x_i - x_j||^2}{\theta} \right) + g \mathbb{I}_{i=j} \right)$$

Higdon (2002), Virtual Library of Simulation Experiments (VLSE)

Conditioned on observed data (X, Y) and hyperparameter settings, posterior predictions at locations \mathcal{X} follow

$$Y(\mathcal{X}) \mid X, Y \sim \mathcal{N}\left(\mu^{\star}, \Sigma^{\star}
ight)$$

where

$$\mu^{\star} = \Sigma(\mathcal{X}, X) \Sigma(X)^{-1} Y$$

$$\Sigma^{\star} = \Sigma(\mathcal{X}) - \Sigma(\mathcal{X}, X) \Sigma(X)^{-1} \Sigma(X, \mathcal{X})$$

Hyperparameters may be estimated through MLE or sampled through MCMC.

・ 日 ト (母 ト (母 ト (母 ト (日 ト)

Active Learning

Concluding 0000

"Shallow" GP surrogates are limited by stationarity

Active Learning

Concluding 0000

"Shallow" GP surrogates are limited by stationarity

Deep Gaussian Process Surrogates for Computer Experiments

0.4

х

0.6

0.8

1.0

0.0

0.2

0.4

0.6

x

8.0

1.0

0.8

1.0

0.0

0.2

0.6

х

0.2

0,4

0.0

Approaches to modeling non-stationarity

- Non-stationary kernels (Paciorek & Schervish, 2003; Higdon et al., 1999)
- Partition/Local GPs (Gramacy & Lee, 2007; Gramacy & Apley, 2015)
- Deep GPs (Damianou & Lawrence, 2012; Schmidt & O'Hagan, 2003)

1 Deep Gaussian Processes

Why? What? How?

2 Active Learning

③ Vecchia Approximation

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQの

DGPs are functional compositions of GPs

 $Y_1 \sim \mathcal{N}\left(0, \Sigma(X)\right) \quad \longrightarrow \quad Y_2 \sim \mathcal{N}\left(0, \Sigma(Y_1)\right) \quad \longrightarrow \quad Y_3 \sim \mathcal{N}\left(0, \Sigma(Y_2)\right)$

We represent a two-layer DGP prior as

 $egin{aligned} Y \mid W &\sim \mathcal{N}\left(0, \Sigma(W)
ight) \ W_k \stackrel{ ext{ind}}{\sim} \mathcal{N}\left(0, \Sigma(X)
ight) \ orall \ k = 1, \dots, p. \end{aligned}$

Posterior inference requires

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) \ dW$$

< ロ > < 同 > < 三 > < 三 >

We represent a two-layer DGP prior as

 $egin{aligned} Y \mid W &\sim \mathcal{N}\left(0, \Sigma(W)
ight) \ W_k \stackrel{ ext{ind}}{\sim} \mathcal{N}\left(0, \Sigma(X)
ight) \ orall \ k = 1, \dots, p. \end{aligned}$

Posterior inference requires

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) \ dW$$

To encourage identifiability and parsimony, we impose

- Unit scale and noise-free latent W
- Conditional independence among nodes of W
- Isotropic length scales (single θ for all dimensions of X and W)

1 Deep Gaussian Processes

Why? What? How?

2 Active Learning

③ Vecchia Approximation

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQの

Direct posterior inference is intractible due to the latent layer W.

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) \ dW$$

(日)

Direct posterior inference is intractible due to the latent layer W.

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) \ dW$$

Methods for approximate DGP inference:

- Variational inference (Damianou & Lawrence, 2012; Salimbeni & Deisenroth, 2017; Marmin & Filippone, 2022)
- Expectation propogation (Bui et al., 2016)
- Hamiltonian Monte Carlo sampling (Havasi et al., 2018)

Direct posterior inference for DGPs is intractible

Direct posterior inference is intractible due to the latent layer W.

$$\mathcal{L}(Y \mid X) \propto \int \mathcal{L}(Y \mid W) \mathcal{L}(W \mid X) \ dW$$

To prioritize UQ, we embrace a fully-Bayesian MCMC inferential scheme.

- Metropolis-Hastings sampling of covariance hyperparameters
- Elliptical slice sampling of latent Gaussian layers (Murray et al., 2010)
- Iteration in a Gibbs scheme

Concluding

Elliptical slice sampling provides efficient mixing

Also used for stochastic imputation (Ming et al., 2021)

э.

DGPs	Active Learning	Vecchia	Conclu
○○○○○○○○○○○○○○○	00000000000	000000000000000	0000
Elliptical slice sampling prov	ides efficient mixing		

- R> library(deepgp)
- R> fit <- fit_two_layer(x, y, nmcmc = 10000)</pre>
- R> fit <- trim(fit, 5000, 5)
- R> fit <- predict(fit, x_pred)</pre>

DGPs	
000000000000000000000000000000000000000	

Concluding

Elliptical slice sampling provides efficient mixing

Active Learning

Concluding

Preview of DGP predictive prowess

2-dimensional G-function

Marrel et al. (2009), VLSE

Deep Gaussian Process Surrogates for Computer Experiments

DGPs	Active Learning	Vecchia	Concluding
	00000000000	0000000000000000	0000
Preview of DGP predictive	prowess		

4-dimensional G-function (20 reps)

- RMSE = root mean squared error
- CRPS = continuous rank probability score (Gneiting & Raftery, 2007)

▶ ∢ ≣

• Why?

• Non-stationary flexibility while maintaining the predictive prowess and uncertainty quantification of "shallow" GPs

- What?
 - Functional compositions of Gaussian layers
 - Intermediate layers are latent/unobserved
- How?
 - Bayesian MCMC hinging on elliptical slice sampling of latent layers
 - Implementation in the deepgp package

< ロ > < 同 > < 三 > < 三 >

1 Deep Gaussian Processes

2 Active Learning Why? What?

How?

3 Vecchia Approximation

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三日 - のへで

 Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer, & Wycoff, 2022).

 Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer, & Wycoff, 2022).

1 Deep Gaussian Processes

3 Vecchia Approximation

|▲口▶▲□▶▲目▶▲目▶ 目 のQの

When computational costs are high, we may make the most of a stringent simulation budget through greedy acquisition: sequential design.

Concluding

Active Learning/Sequential Design through greedy acquisitions

$$Y(x) \mid X_n, Y_n \sim \mathcal{N}\left(\mu(x), \sigma^2(x)\right) \quad \text{for} \quad \begin{array}{l} \mu(x) = \Sigma(x, X_n) \Sigma(X_n)^{-1} Y_n \\ \sigma^2(x) = \Sigma(x) - \Sigma(x, X_n) \Sigma(X_n)^{-1} \Sigma(X_n, x) \end{array}$$

Given augmented inputs $X_{n+1} = \{X_n, x_{n+1}\}$, the variance becomes

$$\sigma_{n+1}^{2}(x) = \Sigma(x) - \Sigma(x, X_{n+1})\Sigma(X_{n+1})^{-1}\Sigma(X_{n+1}, x)$$

イロト イヨト イヨト イヨト

Concluding

Active Learning/Sequential Design through greedy acquisitions

$$Y(x) \mid X_n, Y_n \sim \mathcal{N}\left(\mu(x), \sigma^2(x)\right) \quad \text{for} \quad \begin{array}{l} \mu(x) = \Sigma(x, X_n) \Sigma(X_n)^{-1} Y_n \\ \sigma^2(x) = \Sigma(x) - \Sigma(x, X_n) \Sigma(X_n)^{-1} \Sigma(X_n, x) \end{array}$$

Given augmented inputs $X_{n+1} = \{X_n, x_{n+1}\}$, the variance becomes

$$\sigma_{n+1}^{2}(x) = \Sigma(x) - \Sigma(x, X_{n+1})\Sigma(X_{n+1})^{-1}\Sigma(X_{n+1}, x)$$

We choose acquisitions to minimize the posterior predictive variance.

$$x_{n+1} = \operatorname*{argmin}_{x_{n+1}} \mathrm{IMSE}(x_{n+1}) \quad \mathrm{where} \quad \mathrm{IMSE}(x_{n+1}) = \int \sigma_{n+1}^2(x) dx$$

For faster computation, we also utilize the sum approximation (Cohn, 1994).

$$x_{n+1} = \operatorname*{argmax}_{x_{n+1}} \operatorname{ALC}(x_{n+1}) \quad ext{where} \quad \operatorname{ALC}(x_{n+1}) \propto -\sum_{x \in X_{ref}} \sigma_{n+1}^2(x)$$

(日)

Concluding 0000

Active Learning/Sequential Design through greedy acquisitions

(日)

Concluding 0000

Active Learning/Sequential Design through greedy acquisitions

If the surrogate is stationary, sequential designs will end up "space-filling."

< ロ > < 同 > < 三 > < 三

1 Deep Gaussian Processes

2 Active Learning

What?

How?

③ Vecchia Approximation

▲ロ▶▲御▶▲臣▶▲臣▶ 臣 のへで

Deep Gaussian Process Surrogates for Computer Experiments

Novel inputs x^* are mapped to hidden layer $w^{*(t)}$ using typical GP prediction.

Criteria (IMSE/ALC) are calculated for $w^{\star(t)}$ and averaged across iterations.

(日)

Novel inputs x^* are mapped to hidden layer $w^{*(t)}$ using typical GP prediction.

Criteria (IMSE/ALC) are calculated for $w^{\star(t)}$ and averaged across iterations.

R> fit <- fit_two_layer(x, y)
R> imse <- IMSE(fit, x_candidates)
R> alc <- ALC(fit, x_candidates)</pre>

Concluding

DGPs depart from space filling and outperform on RMSE/SCORE

plot of ESS samples

Concluding

DGPs depart from space filling and outperform on RMSE/SCORE

DGPs	Active Learning	Vecchia	Concluding
00000000000000	00000000000	00000000000000	0000
Satellite drag computer simi	Ilation		

- Test Particle Monte Carlo (TPM) simulator developed at LANL (Sun et al., 2019)
- Inputs: 7 configuration variables, satellite mesh, atmospheric composition
- Goal: RMSPE below 1% starting on a restricted domain

• Why?

When computer simulations are expensive, the "budget" of evaluations is limited

- What?
 - Sequential selection of inputs using greedy acquisition criteria
 - IMSE or ALC (see Gramacy, Sauer, & Wycoff, 2022 for Expected Improvement)
- How?
 - Map inputs through hidden layers and evaluate criterion on mapped values
 - Sequential selections depart from space-filling and focus on regions of interest

Deep Gaussian Processes

2 Active Learning

3 Vecchia Approximation Why? What? How?

• Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer & Wycoff, 2022).

- Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer & Wycoff, 2022).
- Deploy a space filling design that is large enough to pick up on changes in the response surface (Sauer, Cooper & Gramacy, 2022).

- Strategically choose input configurations to maximize learning from a limited budget (Sauer, Gramacy & Higdon, 2022; Gramacy, Sauer & Wycoff, 2022).
- Deploy a space filling design that is large enough to pick up on changes in the response surface (Sauer, Cooper & Gramacy, 2022).

Large datasets present computational bottlenecks for GP inference $(\mathcal{O}(n^3))$.

$$\mathcal{L}(Y \mid X) \propto |\Sigma(X)|^{-1/2} \exp\left(-rac{1}{2}Y^{ op}\Sigma(X)^{-1}Y
ight)$$

These are compounded in a Bayesian DGP setting.

DGPs	Active Learning	Vecchia	Concluding
000000000000000	00000000000	ooooooooooooooo	0000
Inducing points are popular.	but not effective		

Competing implementations for DGP inference ...

- Variational inference (Damianou & Lawrence, 2012; Salimbeni & Deisenroth, 2017; Marmin & Filippone, 2022)
- Expectation propogation (Bui et al., 2016)
- Hamiltonian Monte Carlo sampling (Havasi et al., 2018)

All (but one) use **inducing point** approximations to handle large data sizes (Snelson & Ghahramani, 2006; Banerjee et al., 2008):

• observe covariance through fixed set of "knots" which are tricky to place and result in blurry predictions (Garton et al., 2020; Wu et al., 2022).

Marmin & Filippone (2022) utilize random feature expansions.

Deep Gaussian Processes

2 Active Learning

3 Vecchia Approximation Why? What? How?

- ▲ ロ ト ▲ 団 ト ▲ 国 ト ▲ 国 - うへで

DGPs	Active Learning	Vecchia	Concluding
00000000000000	00000000000	000 0●000 00000000	0000
Vecchia approximation from	conditional distributions		

Any joint distribution may be represented as a product of conditional distributions, i.e.

 $f(y_3, y_2, y_1) = f(y_3 \mid y_2, y_1)f(y_2 \mid y_1)f(y_1).$

Any joint distribution may be represented as a product of conditional distributions, i.e.

$$f(y_3, y_2, y_1) = f(y_3 \mid y_2, y_1)f(y_2 \mid y_1)f(y_1).$$

In general,

$$\mathcal{L}(Y) = \prod_{i=1}^{n} \mathcal{L}\left(y_i \mid Y_{c(i)}\right) \quad \text{for} \quad c_0 = \emptyset \quad \text{and} \quad c_i = \{1, 2, \dots, i-1\} \; \forall \; i = 2, \dots, n.$$

The Vecchia approximation (Vecchia, 1988) instead takes the subset

$$c_i \subset \{1, 2, \dots, i-1\}$$
 of size $|c_i| = \min(m, i-1)$.

< ロ > < 同 > < 三 > < 三

 DGPs
 Active Learning
 Vecchia
 Concluding

 000000000000
 0000000000
 0000000000
 0000

 Vecchia approximation of GPs
 Vecchia
 Concluding

In a typical "shallow" GP setting we have

$$\mathcal{L}(Y) = \prod_{i=1}^{n} \mathcal{L}(y_i \mid Y_{c(i)}),$$

where

$$\begin{aligned} \mathcal{L}(y_i \mid Y_{c(i)}) \sim \mathcal{N}_1(\mu_i(X), \sigma_i^2(X)) & \text{for} & \begin{array}{l} B_i(X) &= \Sigma(x_i, X_{c(i)}) \Sigma(X_{c(i)})^{-1} \\ \mu_i(X) &= B_i(X) Y_{c(i)} \\ \sigma_i^2(X) &= \Sigma(x_i) - B_i(X) \Sigma(X_{c(i)}, x_i). \end{aligned}$$

This converts an $\mathcal{O}(n^3)$ computation into *n*-many $\mathcal{O}(m^3)$ computations.

Stein et al., 2004; Datta et al., 2016; Stroud et al., 2017; Finley et al., 2019; Katzfuss & Guinness 2020, 2021

Vecchia

Concluding

Vecchia approximation induces sparsity in precision matrix

The Cholesky decomposition of the precision matrix is **sparse**.

$$Y \sim \mathcal{N}\left(0, \Sigma = Q^{-1} = (UU^{ op})^{-1}
ight)$$

The upper triangular U matrix has closed-form

$$U^{ji} = egin{cases} rac{1}{\sigma_i(X)} & i=j \ -rac{1}{\sigma_i(X)} B_i(X) [\#j \in c(i)] & j \in c(i) \ 0 & ext{otherwise} \end{cases}$$

whose entries may be populated in parallel.

$$\left(\begin{array}{c} \textbf{Likelihood Evaluation} \\ \log \mathcal{L}(Y) \propto \sum_{i=1}^n \log(U^{ii}) - \frac{1}{2} Y^\top U U^\top Y \end{array} \right)$$

$$\begin{array}{l} \textbf{Prior Samples} \\ Y^{\star} = (U^{\top})^{-1}z \\ z \sim \mathcal{N}(0,\mathbb{I}) \end{array} \end{array}$$

Posterior Predictions

$$\mathcal{Y} \mid Y, X \sim \mathcal{N} (\mu^*, \Sigma^*)$$

 $\mu^* = -(U_{\mathcal{X}}^\top)^{-1} U_{x,\mathcal{X}}^\top Y$
 $\Sigma^* = (U_{\mathcal{X}} U_{\mathcal{X}}^\top)^{-1}$

Ξ.

*ロト *部ト *注ト *注ト

Deep Gaussian Processes

2 Active Learning

3 Vecchia Approximation

Why? What? How?

Ξ.

*ロト *部ト *注ト *注ト

 DGPs
 Active Learning
 Vecchia
 Concluding

 000000000000
 0000000000
 000000000
 0000

 Vecchia-approximated DGPs
 Vecchia
 Concluding

Recall our "un-approximated" DGP model

$$Y \mid W \sim \mathcal{N}(0, \Sigma(W))$$
 $W_k \stackrel{\mathrm{ind}}{\sim} \mathcal{N}(0, \Sigma(X)) \quad \forall \ k = 1, \dots, p.$

DGPs	Active Learning	Vecchia	Concluding
00000000000000	00000000000	○○○○○○○●○○○○○	0000
Vecchia-approximated DGPs			

Recall our "un-approximated" DGP model

$$Y \mid W \sim \mathcal{N}(0, \Sigma(W)) \qquad W_k \stackrel{\mathrm{ind}}{\sim} \mathcal{N}(0, \Sigma(X)) \;\; \forall \;\; k = 1, \dots, p.$$

In our DGP-Vecchia model, we impose a Vecchia approximation at each GP

$$Y \mid W \sim \mathcal{N}\left(0, (U_w U_w^\top)^{-1}\right) \qquad W_k \stackrel{\text{ind}}{\sim} \mathcal{N}_n\left(0, \left((U_x^{(k)})(U_x^{(k)})^\top\right)^{-1}\right) \quad \forall \ k = 1, \dots, p.$$

Recall our "un-approximated" DGP model

$$Y \mid W \sim \mathcal{N}(0, \Sigma(W)) \qquad W_k \stackrel{\mathrm{ind}}{\sim} \mathcal{N}(0, \Sigma(X)) \;\; \forall \;\; k = 1, \dots, p.$$

In our DGP-Vecchia model, we impose a Vecchia approximation at each GP

$$Y \mid W \sim \mathcal{N}\left(0, (U_w U_w^{\top})^{-1}\right) \qquad W_k \stackrel{\text{ind}}{\sim} \mathcal{N}_n\left(0, \left((U_x^{(k)})(U_x^{(k)})^{\top}\right)^{-1}\right) \quad \forall \ k = 1, \dots, p.$$

Within our DGP MCMC algorithm, we replace every (i) likelihood evaluation, (ii) prior sample, and (iii) GP prediction with its Vecchia-approximated counterpart.

```
R> fit <- fit_two_layer(x, y, vecchia = TRUE)
R> fit <- predict(fit, x_pred)</pre>
```

Vecchia

Ordering/conditioning specifications

We utilize

- Random orderings at each Gaussian layer (Guinness, 2018; Wu et al., 2022)
- Nearest-neighbor conditioning sets (Datta et al., 2016)
- Updating of conditioning sets based on learned latent layer warpings

Vecchia

Concluding 0000

Computation scales linearly

イロト イボト イヨト イヨト

Deep and shallow competitors

- DGP DSVI: "doubly stochastic" VI (Salimbeni & Deisenroth, 2017)
 - utilizes inducing points
- DGP HMC: Hamiltonian Monte Carlo (Havasi et al., 2018)
 - utilizes inducing points
- DGP VEC: our Vecchia-approximated ESS (Sauer, Cooper, & Gramacy, 2022)
- GP: full un-approximated GP (when feasible)
- GP SVEC: Scaled Vecchia "shallow" GP (Katzfuss et al., 2020)

DGPs 0000000000000000000000 Active Learning

Vecchia

Concluding

DGP-Vecchia outperforms both deep and shallow competitors

4-dimensional G-function (20 reps)

simulation with noise harger scale simulatio

イロト イポト イヨト イヨ

Satellite drag computer simulation

- Same TPM simulator, bigger data set/domain
- Same Goal: RMSPE below 1%

DGP DSVI and DGP HMC omitted from figure with RMSPE's 30-35%

Vecchia

Concluding 0000

Vecchia

Vecchia approximation for DGPs - Summary

- Why?
 - Cubic computational bottlenecks, compounded in DGP MCMC
- What?
 - Imposing sparsity in the precision matrix (and its Cholesky decomposition)
 - Maintaining global scale
- How?
 - Same DGP MCMC scheme with Vecchia-approximation for each GP component
 - Random ordering at each layer
 - Nearest-neighbor conditioning, optionally adjusted based on learned latent layer

< ロ > < 同 > < 三 > < 三

Thanks!

Everything you saw today is supported by

- deepgp for R on CRAN (Sauer, 2022)
- and a git repo of examples:

https://bitbucket.org/gramacylab/deepgp-ex/

Many thanks for your attention!

< ロ > < 同 > < 三 > < 三 >

Elliptical slice samples for 1d piecewise function

▶ go back

Concluding 0●00

00000000000000	00000000000000000000000000000000000000	000000000000000000000000000000000000000	
Simulation with noise			

4-dimensional G-function with white noise

▶ go back

DGPs	Active Learning	Vecchia	Concluding
00000000000000	00000000000	00000000000000000	000●
Larger scale simulation			

6-dimensional G-function

