Non-Gaussian Emulation of Climate Models via Scalable Bayesian Transport Maps

Matthias Katzfuss

Department of Statistics University of Wisconsin–Madison

Matthias Katzfuss (UW-Madison)

- 1 Introduction
- 2 Bayesian transport maps
- 3 Emulating spatial distributions using transport maps
- 4 Numerical comparisons
- 5 Extensions
- 6 Conclusions

1 Introduction

- 2 Bayesian transport maps
- 3 Emulating spatial distributions using transport maps
- 4 Numerical comparisons
- 5 Extensions
- 6 Conclusions

Introduction

Motivating example: Climate-model output

- log precipitation rate on a grid of size $N = 288 \times 192 = 55,296$
- want to infer the N-dimensional distribution based on an ensemble of size n < 100

Matthias Katzfuss (UW-Madison)

Challenges

- Dependence:
 - nonstationary
 - nonparametric
 - nonlinear (i.e., non-Gaussian)
- Computation (scalability to large N)

Many existing approaches address some of these challenges, but few address all.

1 Introduction

2 Bayesian transport maps

3 Emulating spatial distributions using transport maps

- 4 Numerical comparisons
- 5 Extensions
- 6 Conclusions

Transport maps

- $\mathbf{y} = (y_1, \dots, y_N)^\top$: zero-mean continuous random vector
 - for example, spatial field at N locations
- Transforming a Gaussian distribution to a standard Gaussian:

$$\mathbf{y} \sim \mathcal{N}_N(\mathbf{0}, \mathbf{\Sigma})$$
 with $\mathbf{\Sigma}^{-1} = \mathbf{L}^ op \mathbf{L} \implies \qquad \mathbf{L} \mathbf{y} \sim \mathcal{N}_N(\mathbf{0}, \mathbf{I}_N)$

• Extension to non-Gaussian $p(\mathbf{y})$: nonlinear transport map $\mathcal{T}: \mathbb{R}^N \to \mathbb{R}^N$ (e.g., Marzouk et al, 2016) such that

$$\mathbf{y} \sim p(\mathbf{y}) \implies \mathcal{T}(\mathbf{y}) \sim \mathcal{N}_N(\mathbf{0}, \mathbf{I}_N)$$

• Given \mathcal{T} and \mathcal{T}^{-1} , we can:

- Sample $\mathbf{y}^{\star} = \mathcal{T}^{-1}(\mathbf{z}^{\star}) \sim p(\mathbf{y})$ based on $\mathbf{z}^{\star} \sim \mathcal{N}_{N}(\mathbf{0}, \mathbf{I}_{N})$
- Transform the non-Gaussian y to z = T(y), for which simple linear operations (e.g., averaging) may be more meaningful

Illustration of transport maps

Transport maps as regressions

• WLOG, \mathcal{T} is lower-triangular:

$$\mathcal{T}(\mathbf{y}) = \begin{bmatrix} \mathcal{T}_1(y_1) \\ \mathcal{T}_2(y_1, y_2) \\ \vdots \\ \mathcal{T}_N(y_1, y_2, \dots, y_N) \end{bmatrix}$$

- Assumption: each T_i is linearly additive in its *i*th argument
- Then the target distribution has the form:

$$p(\mathbf{y}) = \prod_{i=1}^{N} \mathcal{N}(y_i | f_i(\mathbf{y}_{1:i-1}), d_i^2)$$

for some $f_i : \mathbb{R}^{i-1} \to \mathbb{R}$, $d_i \in \mathbb{R}^+$

Thus, the difficult problem of inferring p(y) has turned into N independent regressions of y_i on y_{1:i-1} of the form

$$y_i = f_i(\mathbf{y}_{1:i-1}) + \epsilon_i, \quad \epsilon_i \stackrel{ind.}{\sim} \mathcal{N}(0, d_i^2), \qquad i = 1, \dots, N$$

Matthias Katzfuss (UW-Madison)

Bayesian transport maps

Most existing transport-map approaches (e.g., Marzouk et al, 2016): estimate parameters in parametric map, often without quantifying uncertainty.

Our Bayesian approach:

- Independent Gaussian-process-inverse-Gamma priors for the f_i and d_i^2 , i = 1, ..., N
- GP prior on f_i is nonparametric and shrinks toward a linear function
- Induces prior distributions on the \mathcal{T}_i and thus on the entire map \mathcal{T}
- Priors are conjugate, which leads to closed-form expressions

Posterior map

- Training data: $\mathbf{Y} = (\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(n)})$ such that $\mathbf{y}^{(j)} \stackrel{iid}{\sim} p(\mathbf{y}|\mathbf{f}, \mathbf{d})$ with $\mathcal{T}(\mathbf{y}^{(j)}) | \mathbf{f}, \mathbf{d} \sim \mathcal{N}_N(\mathbf{0}, \mathbf{I}_N), j = 1, \dots, n$
- Transport map $\widetilde{\mathcal{T}}$ for posterior predictive distribution:

$$\mathbf{y}^{\star} \sim
ho(\mathbf{y}|\mathbf{Y}) \qquad \Longrightarrow \qquad \widetilde{\mathcal{T}}(\mathbf{y}^{\star}) \sim \mathcal{N}_N(\mathbf{0},\mathbf{I}_N)$$

is also triangular with components obtained using GP prediction:

$$\widetilde{\mathcal{T}}_{i}(y_{1}^{\star},\ldots,y_{i}^{\star}) = \Phi^{-1}\Big(F_{2\widetilde{\alpha}_{i}}\Big(\hat{d}_{i}^{-1}\big(v_{i}(\mathbf{y}_{1:i-1}^{\star})+1\big)^{-1/2}\big(y_{i}^{\star}-\hat{f}_{i}(\mathbf{y}_{1:i-1}^{\star})\big)\Big)\Big)$$

• $\widetilde{\mathcal{T}}^{-1}$ can be evaluated at \mathbf{z}^{\star} by recursively solving $\widetilde{\mathcal{T}}(\mathbf{y}^{\star}) = \mathbf{z}^{\star}$ for \mathbf{y}^{\star} :

$$y_i^{\star} = \hat{f}_i(\mathbf{y}_{1:i-1}^{\star}) + F_{2\tilde{\alpha}_i}^{-1}(\Phi(z_i^{\star})) \hat{d}_i(v_i(\mathbf{y}_{1:i-1}^{\star}) + 1)^{1/2}, \quad i = 1, \dots, N$$

Hyperparameters

- The priors on the f_i and d_i^2 may depend on hyperparameters θ
- Closed-form expression of the integrated likelihood p(Y) (with the f_i and d²_i integrated out) as a product over N closed-form terms
- Use integrated likelihood for empirical (optimization over θ) or fully Bayesian (sampling θ) inference
- Fast optimization via stochastic gradient descent with autodiff

- 1 Introduction
- 2 Bayesian transport maps

3 Emulating spatial distributions using transport maps

- 4 Numerical comparisons
- 5 Extensions
- 6 Conclusions

Maximin ordering

Spatial field: $\mathbf{y} = (y_1, \dots, y_N)^\top$ at locations $\mathbf{s}_1, \dots, \mathbf{s}_N$, with $y_i = y(\mathbf{s}_i)$

Maximum-minimum-distance ordering of $\mathbf{s}_1, \ldots, \mathbf{s}_N$ and hence y_1, \ldots, y_N :

Prior distributions based on scale decay

- Spatial predictions on systematically decaying scale
- Conditional near-Gaussianity on finer scales for stochastic processes with quasiquadratic loglikelihoods
- Priors on *d_i* and *f_i* motivated by GP with Matérn-type covariance:
 - d_i decay polynomially with ℓ_i
 - Influence of kth-NN decays rapidly
 - \rightarrow only consider *m* NNs for sparsity ($\rightarrow N \times O(n^3 + mn^2)$, parallel)

Increased marginal flexibility

- So far, focus on nonlinear (i.e., non-Gaussian) dependence
- Two possible extensions to increase marginal flexibility
 - Marginal transformation: Observe $\tilde{\mathbf{y}} = \mathcal{G}(\mathbf{y})$ such that $\tilde{y}_i = g_i(y_i)$
 - Bayesian nonparametrics: Model regression errors using Dirichlet process mixtures with Gaussian base measures (Requires MCMC; no closed-form transport map)

- 1 Introduction
- 2 Bayesian transport maps
- 3 Emulating spatial distributions using transport maps
- 4 Numerical comparisons
- 5 Extensions
- 6 Conclusions

Precipitation over Americas subregion

Nonlinear TM for precip anomalies on subregion ($N = 37 \times 74 = 2,738$)

Matthias Katzfuss (UW-Madison)

Results for precipitation anomalies

- Log score (LS) for Americas subregion ($N = 37 \times 74 = 2,738$) and entire globe ($N = 288 \times 192 = 55,296$) lower is better
- Early map coefficients captured much more variation than later-ordered coefficients
 - \rightarrow "nonlinear principal components" for non-Gaussian fields

- 1 Introduction
- 2 Bayesian transport maps
- 3 Emulating spatial distributions using transport maps
- 4 Numerical comparisons

5 Extensions

6 Conclusions

Multivariate spatial fields (Wiemann & K, 2023)

Example: Precipitation, soil water content, and runoff anomalies (columns) from 4 samples (rows) from the CESM large ensemble project:

Extensions

Multivariate spatial fields (Wiemann & K, 2023)

Left: Illustration of MM ordering and NN in a toy example in 1-D space for two processes with weak (top) and strong (bottom) dependence Right: Latent process positions estimated from the climate data over 10 CV splits

Multivariate spatial fields (Wiemann & K, 2023)

Posterior distribution of held-out runoff given precipitation and soil water (n = 38): 3 samples and mean

Multivariate spatial fields (Wiemann & K, 2023)

Log scores (higher is better) on held-out runoff test samples conditional on precip and soil water, for our multivariate transport map (MVTM) and a Matérn GP (Parametric), as a function of training ensemble size

Conditional distributions (Drennan et al, in prep)

Goal: Learn conditional distribution $p(\mathbf{y}|\mathbf{x})$ given covariates \mathbf{x} (e.g., emission scenarios, input parameters), by including \mathbf{x} in TM regressions. Example: $p(\mathbf{y}|\mathbf{x}) = \mathcal{N}(\mathbf{y}|\mathbf{0}, \mathbf{K}_x)$, where \mathbf{K}_x is a Matérn covariance with smoothness $\nu = \exp(x)$:

Bottom: $\tilde{\mathcal{T}}_{x}^{-1}(\mathbf{z})$ for fixed \mathbf{z} , different x, using learned conditional TM $\tilde{\mathcal{T}}_{\mathbf{x}}$ Matthias Katzfuss (UW-Madison) 26/32

Climate-model calibration (Chakraborty et al, in prep)

For climate model $p_{\mathbf{x}}(\mathbf{y})$, want to find the parameter value \mathbf{x}^* that most closely matches $p_{\mathbf{x}}(\mathbf{y})$ to the true climate $\pi(\mathbf{y})$:

$$\mathbf{x}^* = \underset{\mathbf{x}}{\operatorname{argmin}} \operatorname{KL}(\pi(\mathbf{y}) \| p_{\mathbf{x}}(\mathbf{y})) = \underset{\mathbf{x}}{\operatorname{argmax}} \operatorname{\mathbb{E}}_{\pi}[\log p_{\mathbf{x}}(\mathbf{y})] \approx \underset{\mathbf{x}}{\operatorname{argmax}} \log p_{\mathbf{x}}(\mathbf{y}^*),$$

given the observation $\mathbf{y}^* \sim \pi(\mathbf{y})$.

Idea: As $p_{\mathbf{x}}(\mathbf{y})$ is unknown (and sampling from it is expensive), use TM $\tilde{\rho}(\mathbf{y}|\mathbf{x})$ as a surrogate.

Example: Calibration using TM surrogate

- Train TM on $n \approx 20$ Matérn fields as before.
- New observation $\mathbf{y}^* \sim p(\mathbf{y}|x^*) = \mathcal{N}(\mathbf{0}, \mathbf{K}_{x^*})$ from "true" distribution

Idea for calibration via active learning

Sequentially for each $k = 1, 2, \ldots$,

- 1. train TM $\tilde{\rho}^{(k)}(\mathbf{y}|\mathbf{x})$ on training data $(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$
- 2. obtain a new training sample $\mathbf{y}^{(k+1)} \sim p_{\mathbf{x}}(\mathbf{y})$ at the value of \mathbf{x} that Exploitation: maximizes $\tilde{p}^{(k)}(\mathbf{y}^*|\mathbf{x})$, or that Exploration: maximizes the discrepancy between $\tilde{p}^{(k)}(\mathbf{y}|\mathbf{x})$ and $p(\mathbf{y}|\mathbf{x})$

Exploitation-only results on Matérn example:

- 1 Introduction
- 2 Bayesian transport maps
- 3 Emulating spatial distributions using transport maps
- 4 Numerical comparisons
- 5 Extensions
- 6 Conclusions

Conclusions

- Infer non-Gaussian distribution via a Bayesian transport map:
 - flexible and nonparametric
 - probabilistic regularization and UQ
- For spatial fields:
 - data-dependent sparsity and thus scalability to high dimensions
 - Bayesian, nonparametric, non-Gaussian extension of Vecchia approx.
- Supported by NSF DMS-1654083, DMS-1953005, NASA AIST-21
- Extensions and applications:
 - More complicated input domains: multivariate, space-time (in prep.),
 - Learn conditional distribution $p(\mathbf{y}|\mathbf{x})$ given covariates \mathbf{x}
 - interpolate between observed x (e.g., emission or intervention scenarios)
 - use as a surrogate for calibrating parameters x

References

- Main: Katzfuss, M., & Schäfer, F. (2023). Scalable Bayesian transport maps for high-dimensional non-Gaussian spatial fields. *Journal of the American Statistical Association*, accepted.
- Linear/Gaussian case: Kidd, B., & Katzfuss, M. (2022). Bayesian nonstationary and nonparametric covariance estimation for large spatial data (with discussion). *Bayesian Analysis*, 17(1), 291–351.
- Multivariate extension: Wiemann, P. F. V., & Katzfuss, M. (2023). Bayesian nonparametric generative modeling of large multivariate non-Gaussian spatial fields. *Journal of Agricultural, Biological, and Environmental Statistics*, 28, 597–617.
- Use in EnKF: Boyles, W., & Katzfuss, M. (2021). Ensemble Kalman filter updates based on regularized sparse inverse Cholesky factors. *Monthly Weather Review*, 149(7), 2231–2238.