Time-domain Astrophysics in the Era of Big Data

V. Ashley Villar

Harvard University, Assistant Professor

Today will be a talk on data-driven methodology,

time-domain astrophysics and the marriage of the two

Youtube: Magnetosheath

VAV+17a

How does the zoo of observed transients connect with the underlying (astro)physics?

Transients are traditionally classified with spectra

Credit: VAV for Astrobites

Transients are traditionally classified with spectra

Transients are traditionally classified with spectra

The Supernova Zoo

The shapes of light curves encode physics

Young Supernova Experiment

Area: 1,500 deg²

Depth: $m_r \sim 21.5$

First data release now available - 1,975 supernovae!

We currently discover ~20,000 supernovae annually

The VRO Needles & the Haystack

The VRO Needles & the Haystack

Only 1 in 10,000 SNe can be studied in real time

Even the MOST RARE classes of supernovae will be incredibly common in the era of the Vera **Rubin Observatory!**

We need to be ready for the "unknown unknowns"

Classify, Identify, Analyze

Mass

Energy

Mass

Mass

Statistically analyze the full sample

Energy

We will extract features from transient light curves and use them to classify events

A surefire way to extract meaningful features: fit a model

A surefire way to extract meaningful features: fit a model

We don't know the best combination of parameters to estimate a class probability

A *
$$\tau_{Rise}$$
+ β / τ_{Fall} = probability of Type Ia?

A *
$$\beta$$
 +t₁ / τ_{Fall} = probability of Type II?

A neural network will give us an approximate guess of this nonlinear function

Using supervised methods, we <u>classify</u> supernovae

Predicted label

de Soto*, VAV+ in prep - on ANTARES! VAV, Gagliano, de Soto 2023

Our classification methods have been applied to...

Pan-STARRS Medium Deep Survey

(Villar+19, Villar+20, Hosseinzadeh+20)

Zwicky Transient Facility

(de Soto* et al. in prep - filter in ANTARES)

Young Supernova Experiment

(Aleo+23)

We can also classify with 0 SN photons!

Host-galaxy classification

Supernovae know where they are born

VAV+ in prep; Gagliano+21

Host galaxy classification

VAV+ in prep; Gagliano+21

Optimize a neural network to do the following:

- 1. Predict the physical parameters of a galaxy
- 2. Be able to compress and then regenerate a galaxy image
- 3. (Make sure that the "representation space" of the galaxies is continuous –we'll come back to this!)

From galaxy images alone, we can predict key parameters

But what about identifying interesting events in real time?

A data-driven, unsupervised method using a variational, recurrent neuron-based autoencoder

Aside: Data-driven methods require *data*

Real:

Sim: PLAsTiCC

Pan-STARRS Medium Deep Survey

Zwicky Transient Facility

Young Supernova Experiment

Community effort, with ~20 classes of transients

~1 million SN-like transients in 3

years of LSST

Every event tagged with physical parameters

Chambers+16, VAV+20, Hosseinzadeh+20

Kessler+19, Hložek+20

Use an autoencoder to encode the full sample

Use a <u>variational</u> autoencoder to *encode* the full sample

Use recurrent neurons to utilize new data

Use recurrent neurons to utilize new data

Use recurrent neurons to utilize new data

VAE estimate is a little odd, thinks it is short and dim.

VAE estimate hits the "correct" peak flux for this type of supernova

VAE estimate correctly predicts the 'bump' in z-band (again a distinct feature for this supernova type)

Look at the encoded space for "needles"

Look at encoded space as the event evolves!

Traditional fitting takes ~10s of minutes to hours for one SN

Traditional fitting takes ~10s of minutes to hours for one SN

So the sample of 10 million SNe from Rubin will cost ~10 million CPU hours!

Replace traditional methods with variational inference

But if our samples have a complex distribution, it may take *many* Gaussians to estimate the density

We are going to learn a (simple!) transformation to take a Gaussian to a complex distribution

Simulation-based inference: Bypassing statistics via deep learning

Simulation-based inference: Bypassing statistics via deep learning

New method takes 10ms per SN...

New method takes 10ms per SN... so about 1 day on a single CPU for the full set of Rubin SNe!

But real data is messy!

What if I have a poor understanding of the underlying noise?

SBI++ is (seemingly) better calibrated than standard nested sampling techniques in the literature!

Welcome to a new era for time-domain astrophysics!

- LSST will push our discovery rate of extragalactic transients to over 1 million objects per year
- By intertwining machine learning and our physical understanding of transients, we will be able to:
 - classify SNe into known classes
 - o identify needles (new, exciting physics) in real time
 - fully analyze the haystack at a computationally reasonable cost

Thank you!