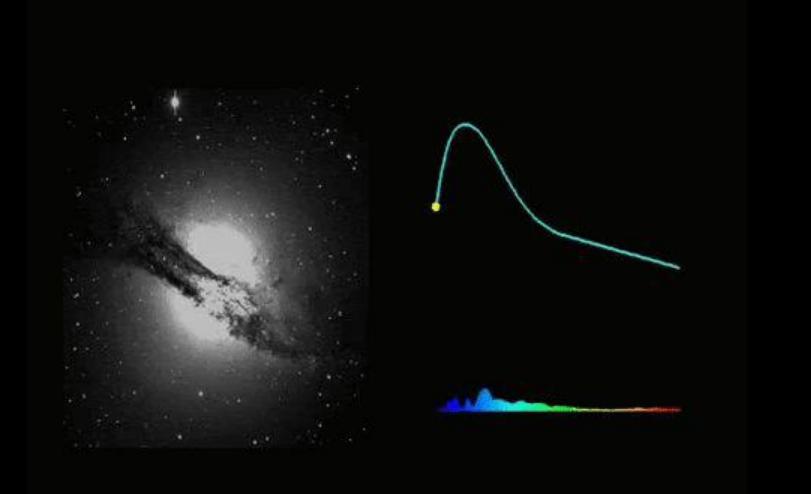
Time-domain Astrophysics in the Era of Big Data

V. Ashley Villar

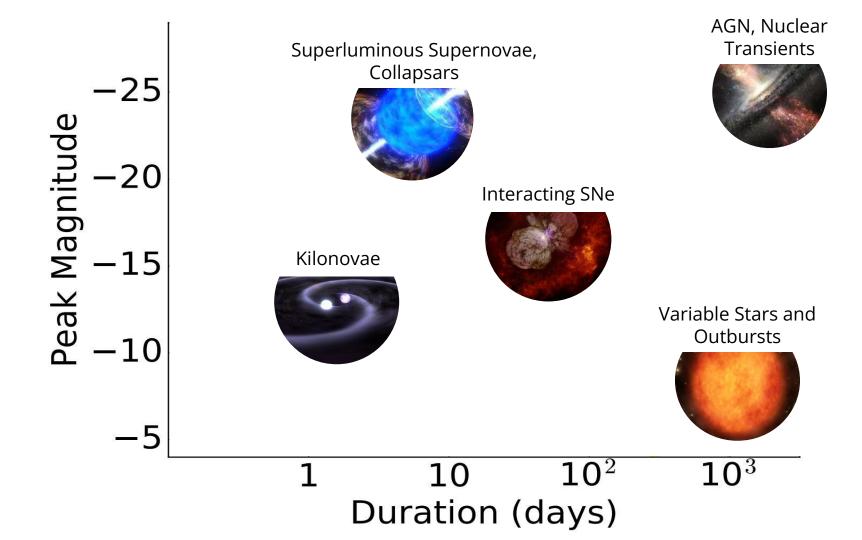
Harvard University, Assistant Professor

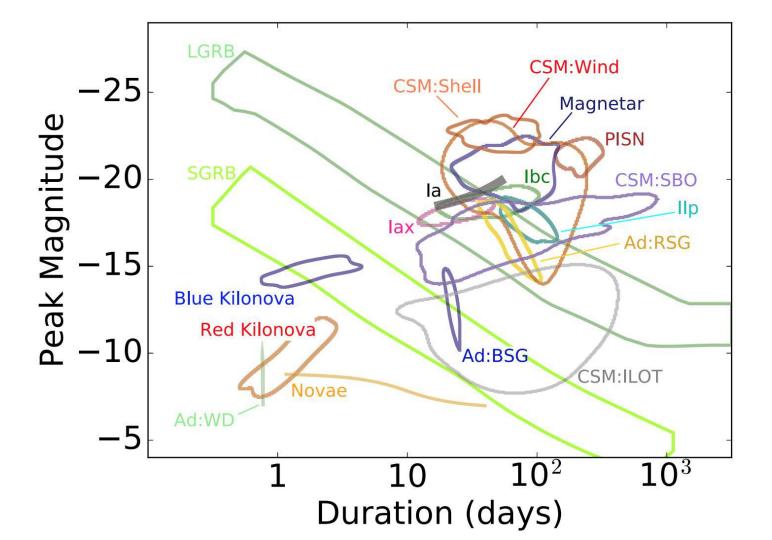
Today will be a talk on data-driven methodology,

time-domain astrophysics and the marriage of the two



Youtube: Magnetosheath

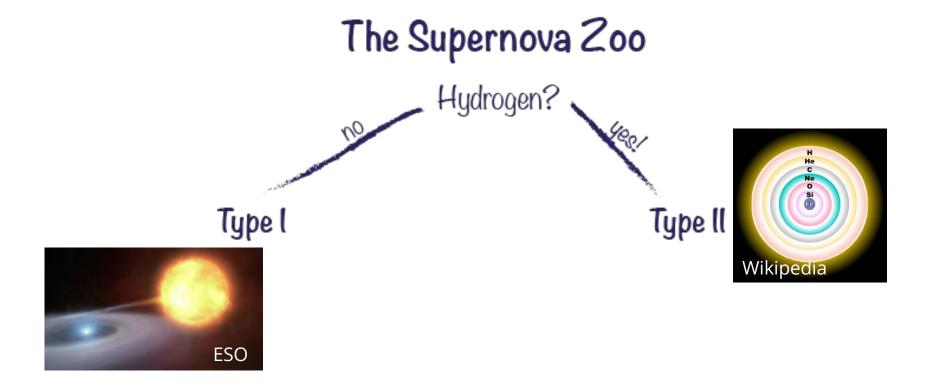




VAV+17a

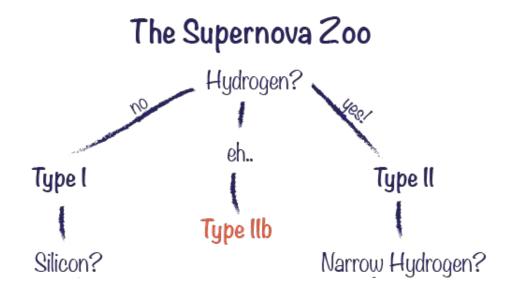
How does the zoo of observed transients connect with the underlying (astro)physics?

Transients are traditionally classified with spectra



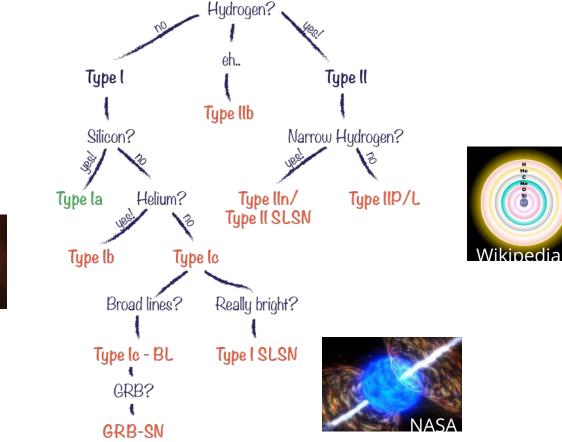
Credit: VAV for Astrobites

Transients are traditionally classified with spectra

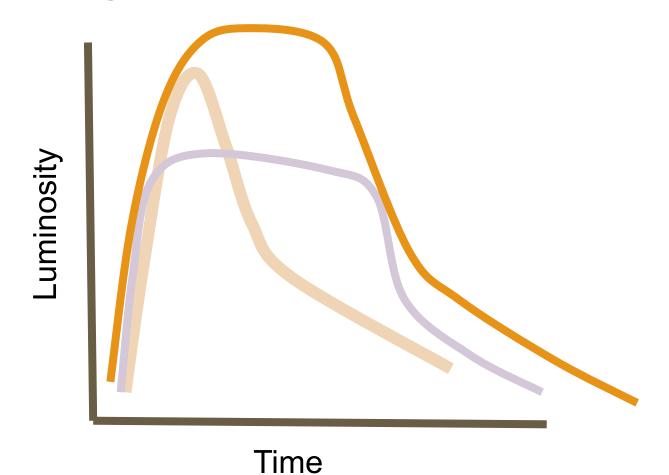


Transients are traditionally classified with spectra

The Supernova Zoo



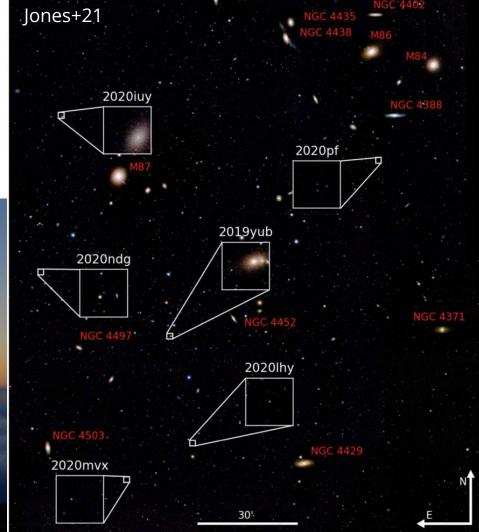
The shapes of light curves encode physics



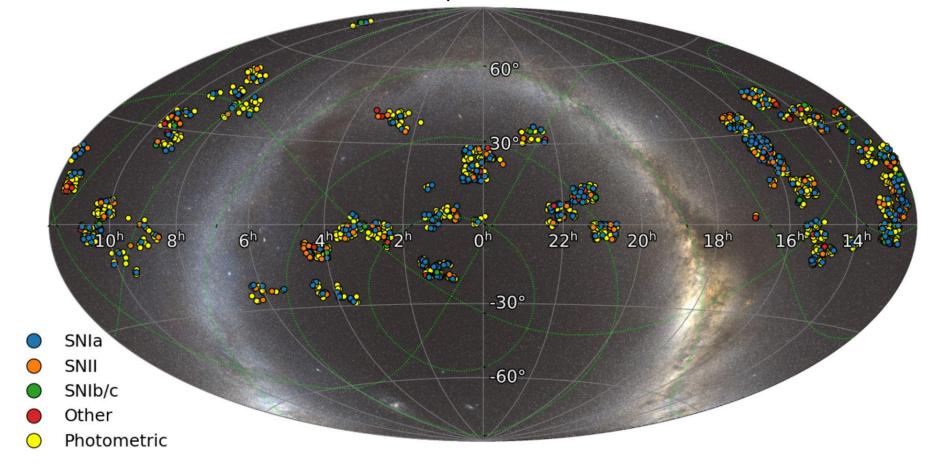
Young Supernova Experiment

Area: 1,500 deg²

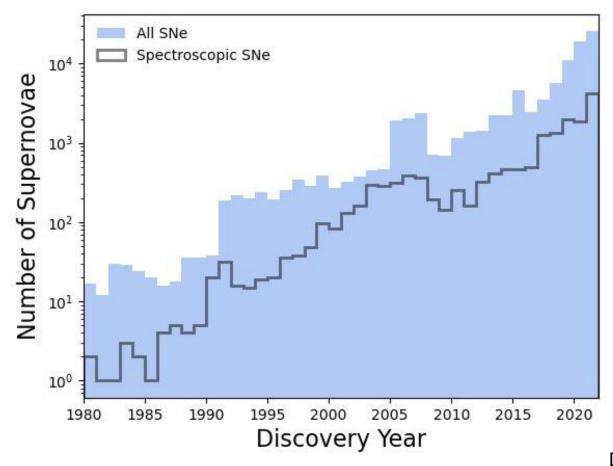
Depth: $m_r \sim 21.5$



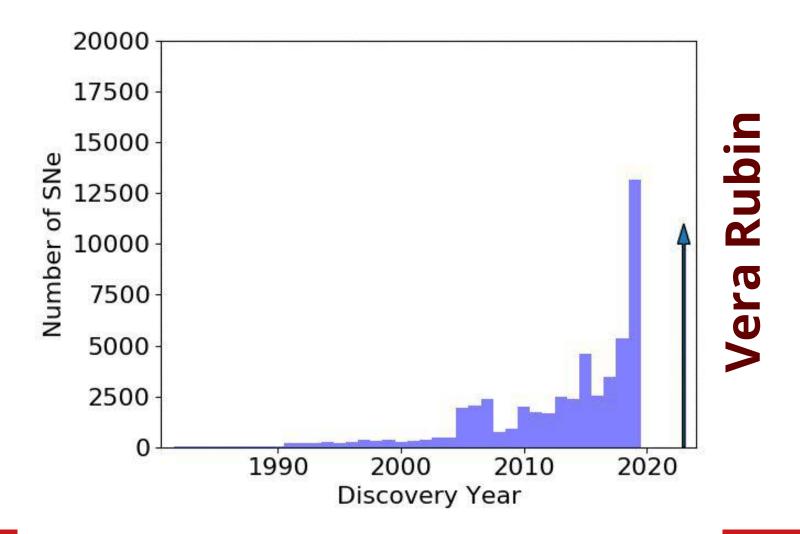
First data release now available - 1,975 supernovae!

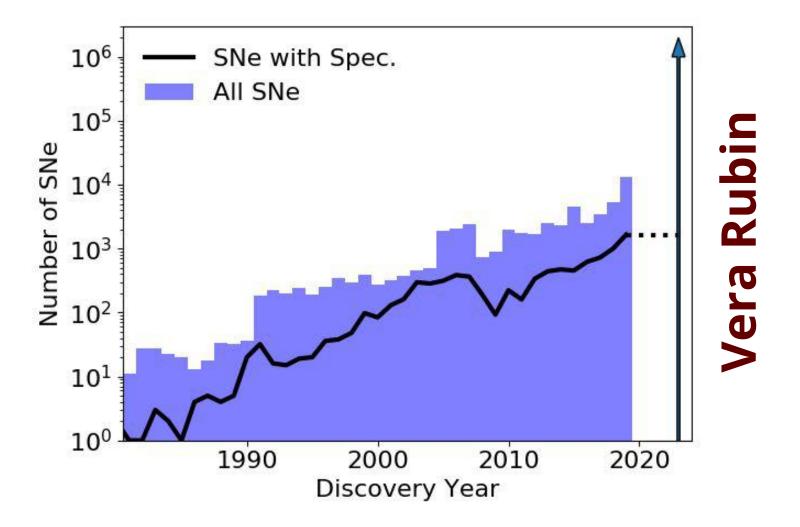


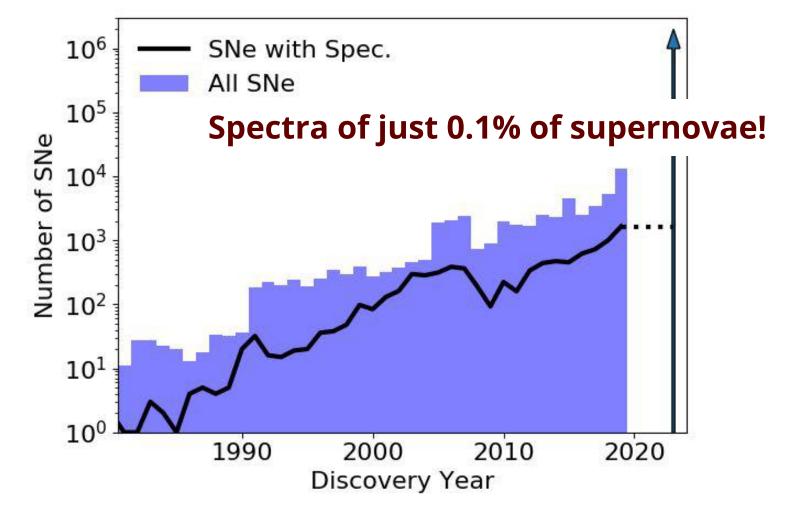
We currently discover ~20,000 supernovae annually



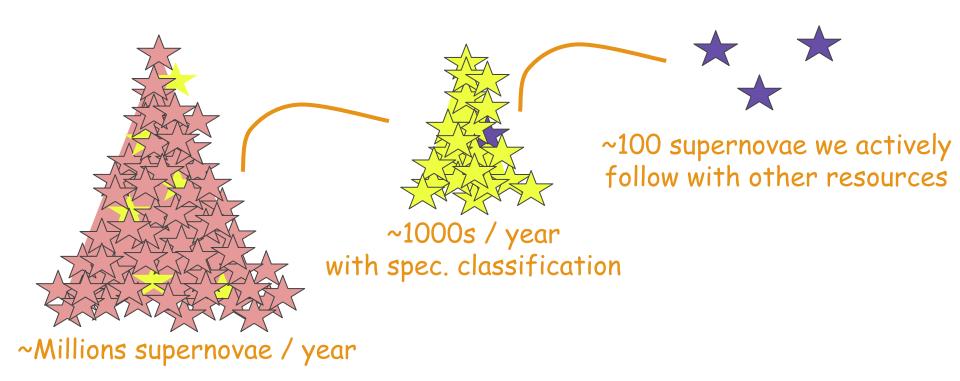








The VRO Needles & the Haystack

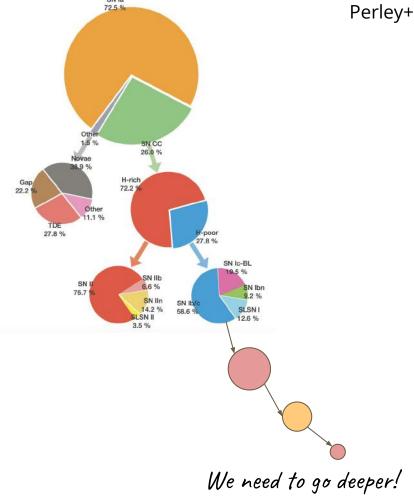


The VRO Needles & the Haystack

Only 1 in 10,000 SNe can be studied in real time

Even the MOST RARE classes of supernovae will be incredibly common in the era of the Vera **Rubin Observatory!**

We need to be ready for the "unknown unknowns"

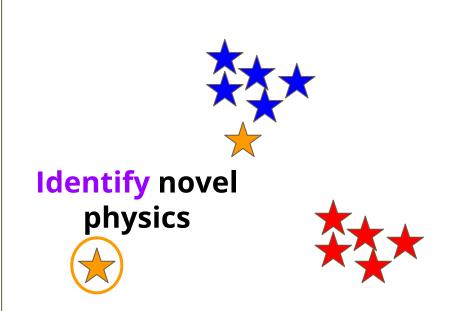


Classify, Identify, Analyze

Mass

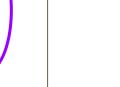
Energy

Mass

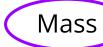


Mass

Statistically analyze the full sample

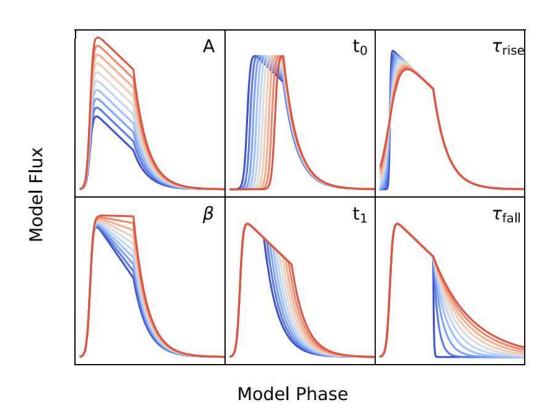


Energy

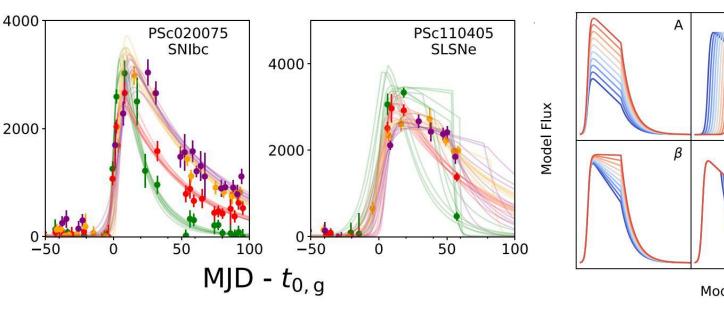


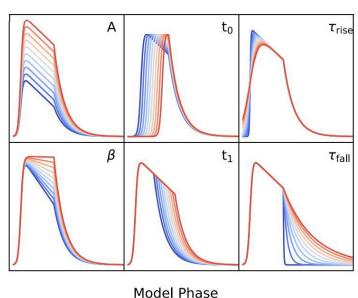
We will extract features from transient light curves and use them to classify events

A surefire way to extract meaningful features: fit a model



A surefire way to extract meaningful features: fit a model



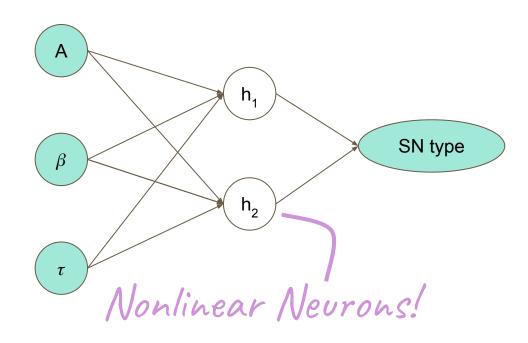


We don't know the best combination of parameters to estimate a class probability

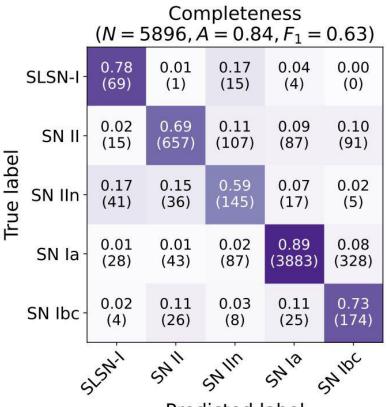
A *
$$\tau_{Rise}$$
+ β / τ_{Fall} = probability of Type Ia?

A *
$$\beta$$
 +t₁ / τ_{Fall} = probability of Type II?

A neural network will give us an approximate guess of this nonlinear function



Using supervised methods, we <u>classify</u> supernovae



Predicted label

de Soto*, VAV+ in prep - on ANTARES! VAV, Gagliano, de Soto 2023

Our classification methods have been applied to...

Pan-STARRS Medium Deep Survey

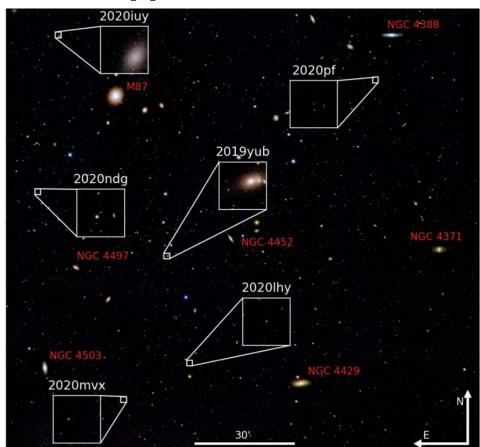
(Villar+19, Villar+20, Hosseinzadeh+20)

Zwicky Transient Facility

(de Soto* et al. in prep - filter in ANTARES)

Young Supernova Experiment

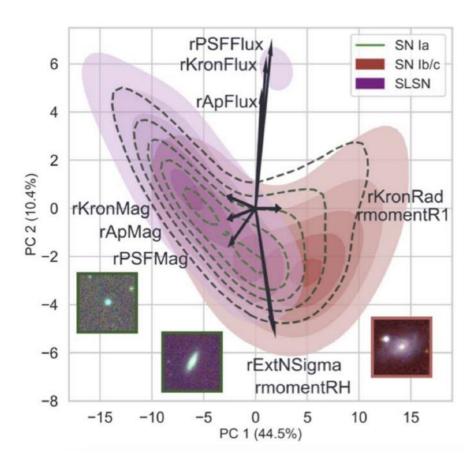
(Aleo+23)



We can also classify with 0 SN photons!

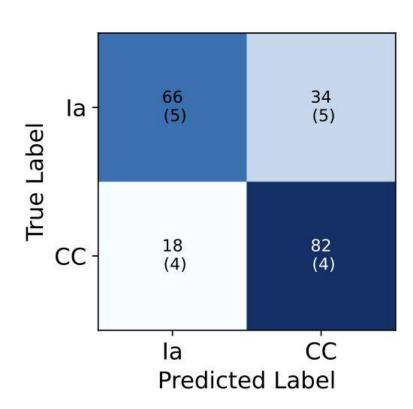
Host-galaxy classification

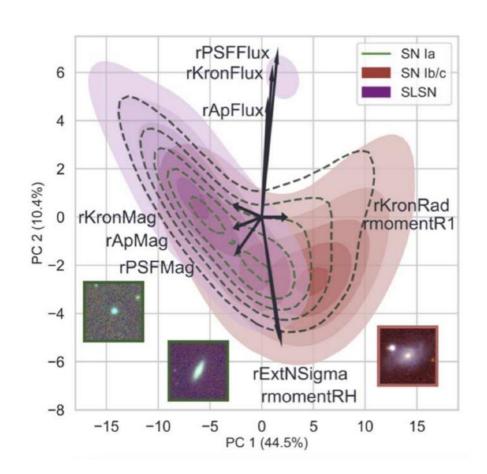
Supernovae know where they are born



VAV+ in prep; Gagliano+21

Host galaxy classification



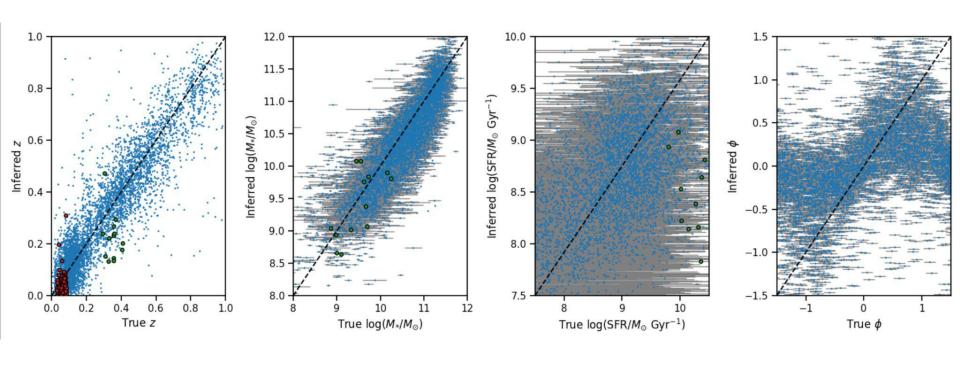


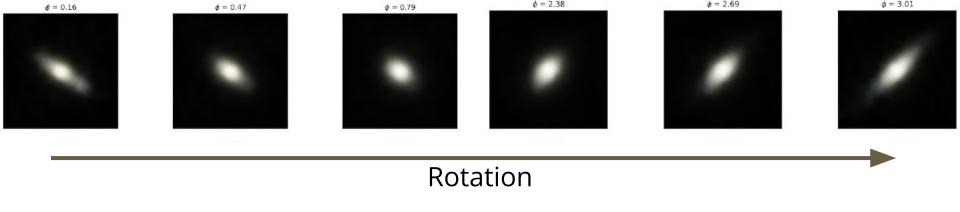
VAV+ in prep; Gagliano+21

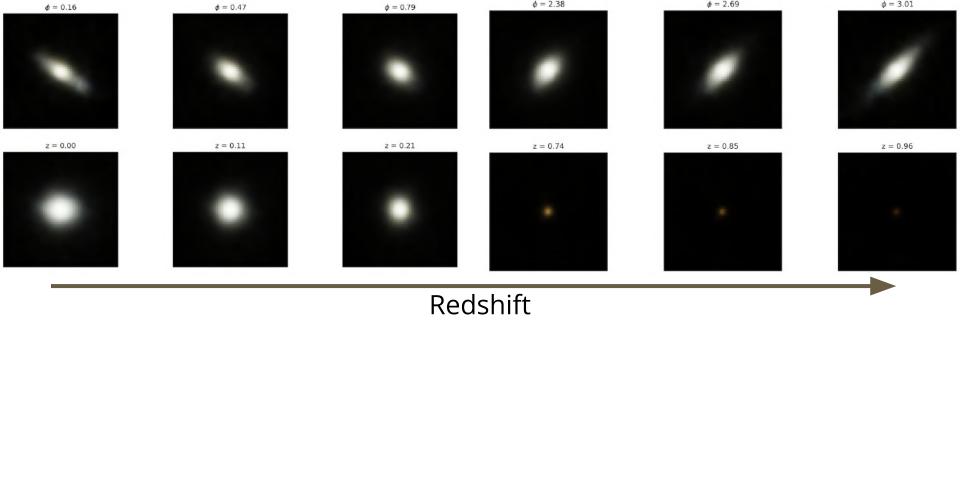
Optimize a neural network to do the following:

- 1. Predict the physical parameters of a galaxy
- 2. Be able to compress and then regenerate a galaxy image
- 3. (Make sure that the "representation space" of the galaxies is continuous –we'll come back to this!)

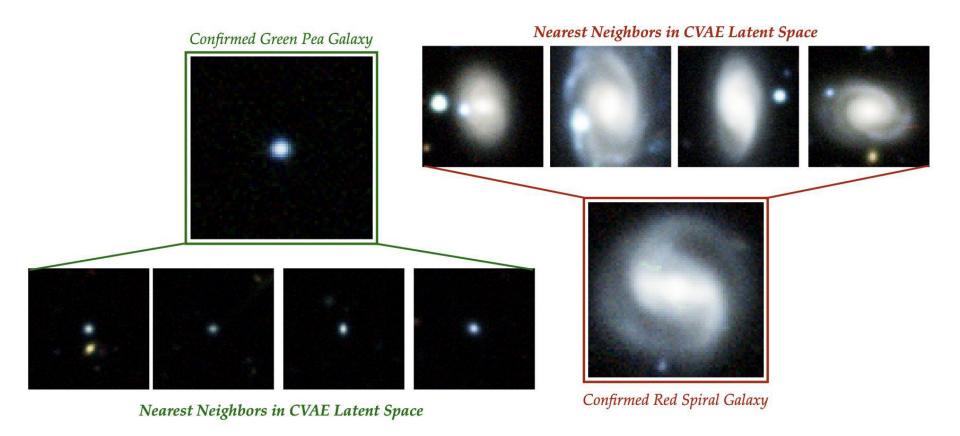
From galaxy images alone, we can predict key parameters



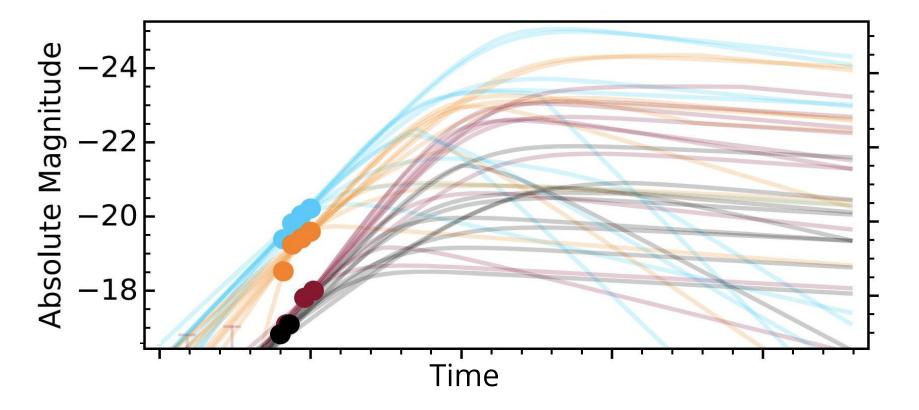








But what about identifying interesting events in real time?



A data-driven, unsupervised method using a variational, recurrent neuron-based autoencoder

Aside: Data-driven methods require *data*

Real:

Sim: PLAsTiCC

Pan-STARRS Medium Deep Survey

Zwicky Transient Facility

Young Supernova Experiment

Community effort, with ~20 classes of transients

~1 million SN-like transients in 3

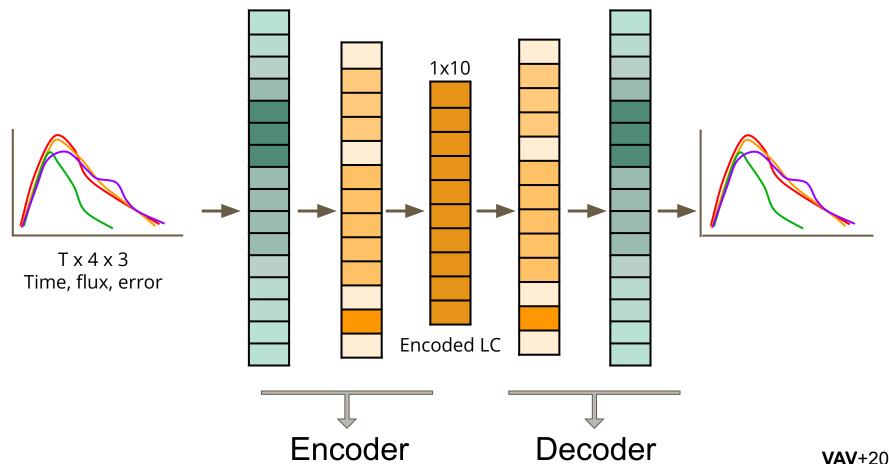
years of LSST

Every event tagged with physical parameters

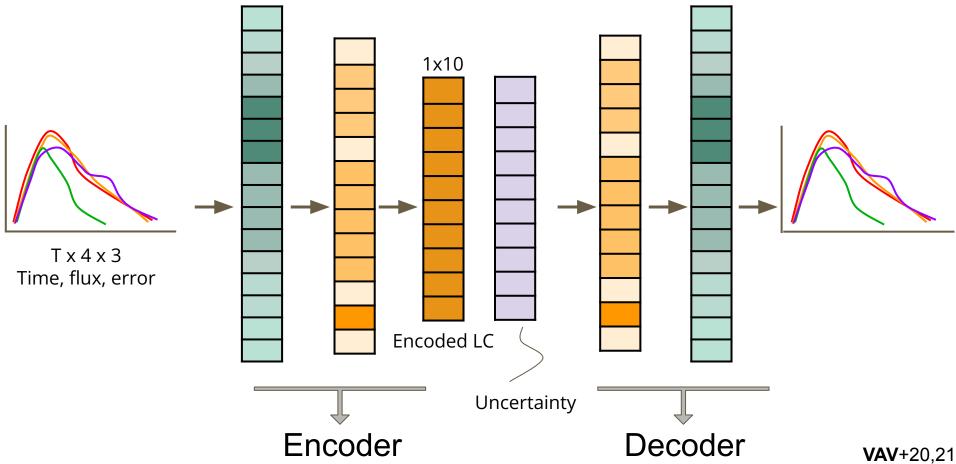
Chambers+16, VAV+20, Hosseinzadeh+20

Kessler+19, Hložek+20

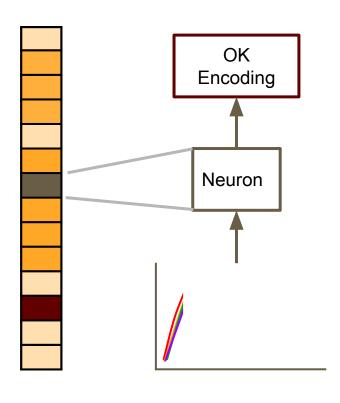
Use an autoencoder to encode the full sample



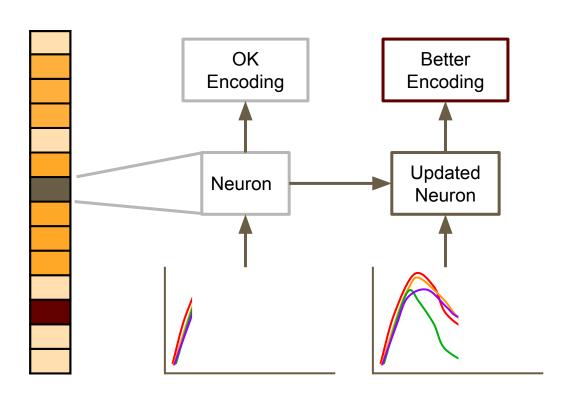
Use a <u>variational</u> autoencoder to *encode* the full sample



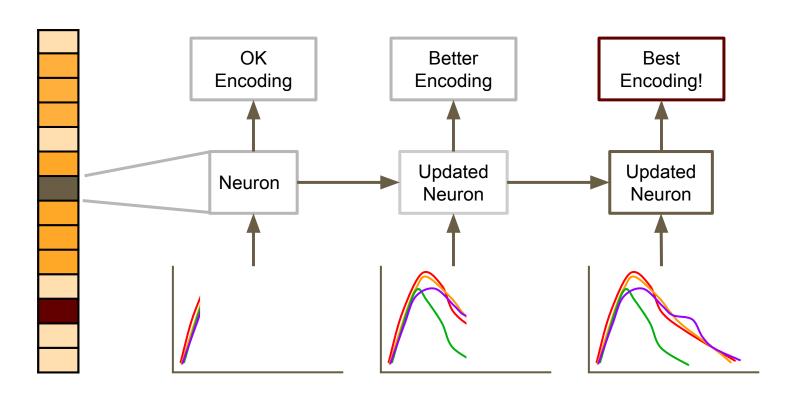
Use recurrent neurons to utilize new data

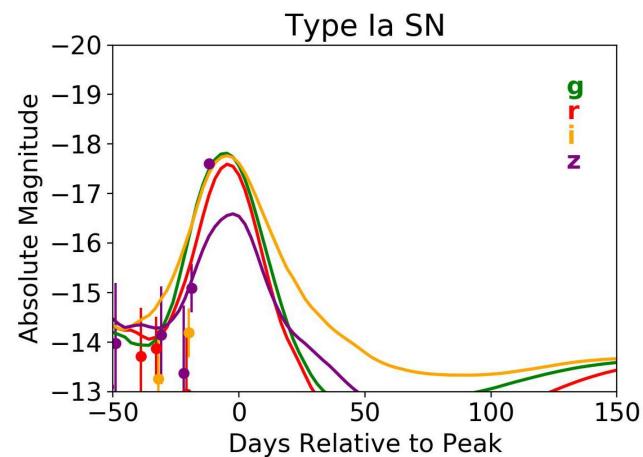


Use recurrent neurons to utilize new data

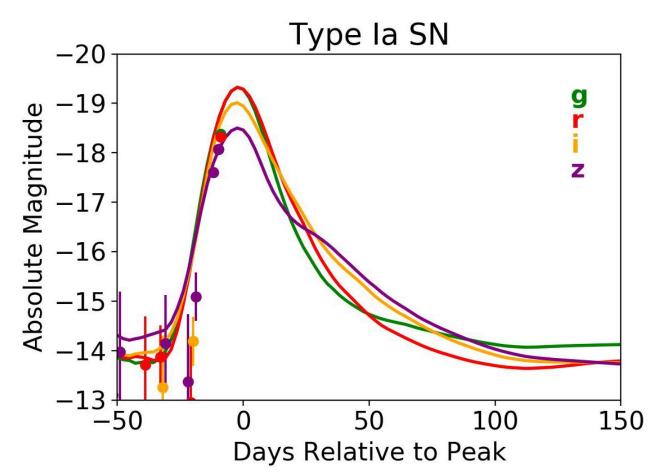


Use recurrent neurons to utilize new data

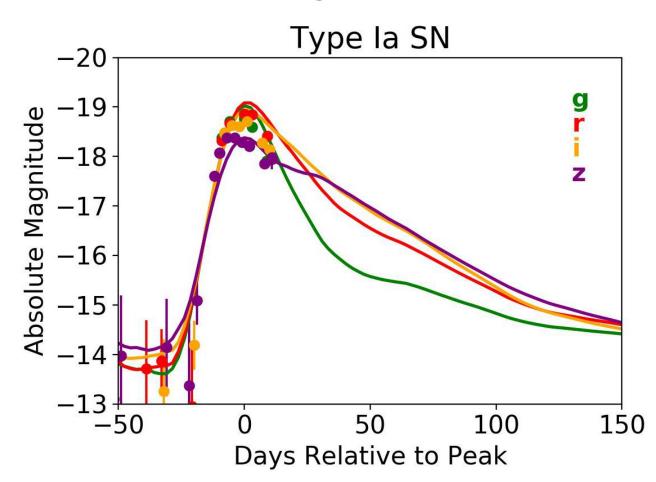




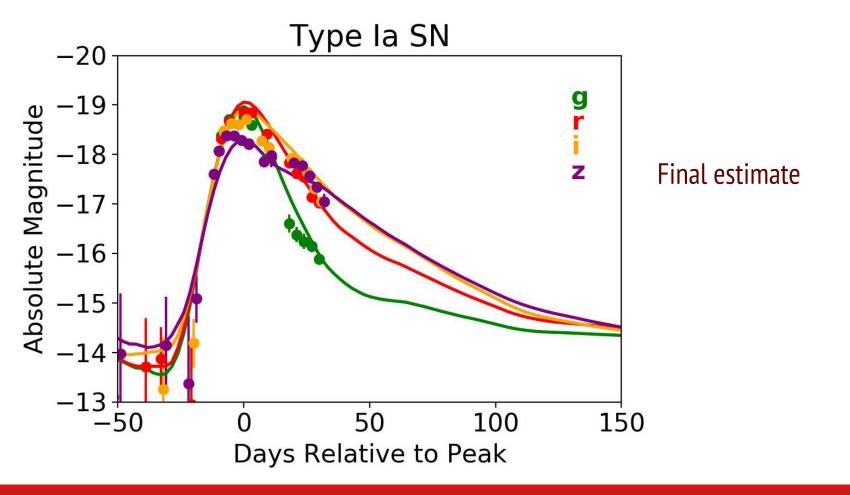
VAE estimate is a little odd, thinks it is short and dim.



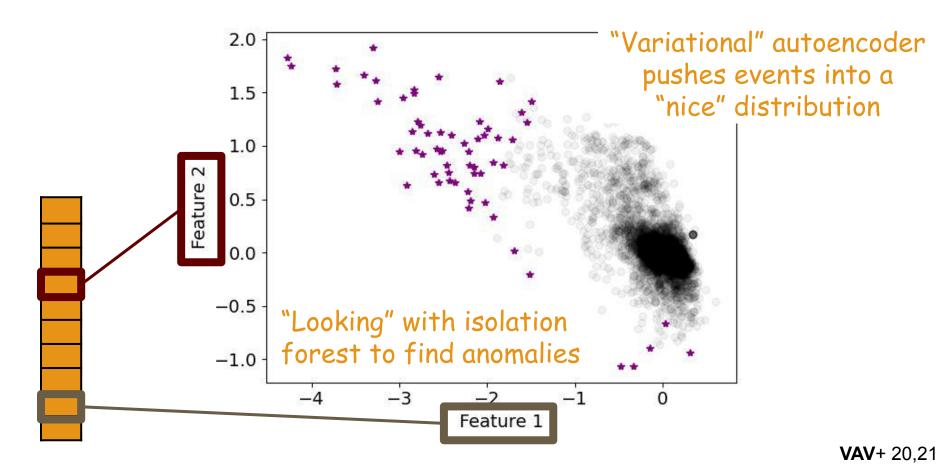
VAE estimate hits the "correct" peak flux for this type of supernova



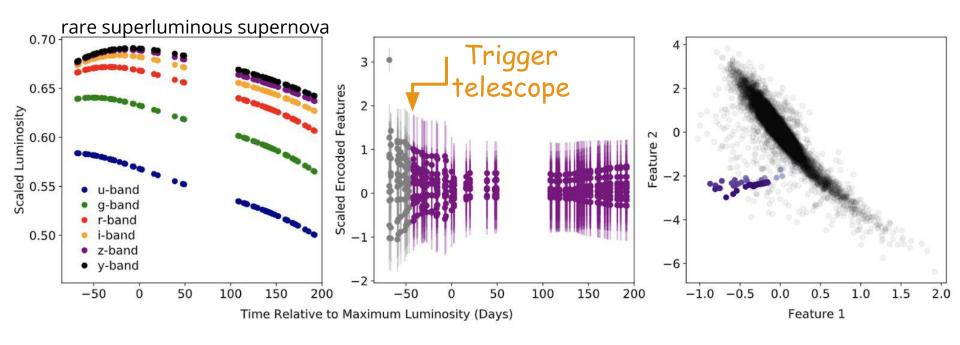
VAE estimate correctly predicts the 'bump' in z-band (again a distinct feature for this supernova type)



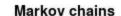
Look at the encoded space for "needles"

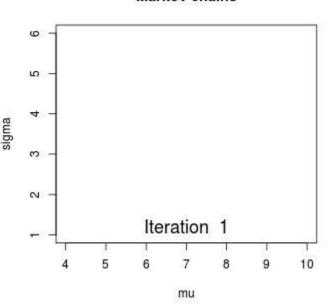


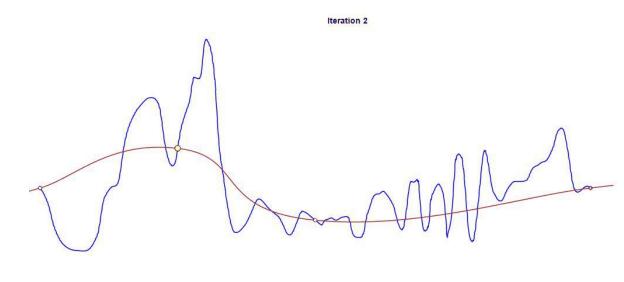
Look at encoded space as the event evolves!



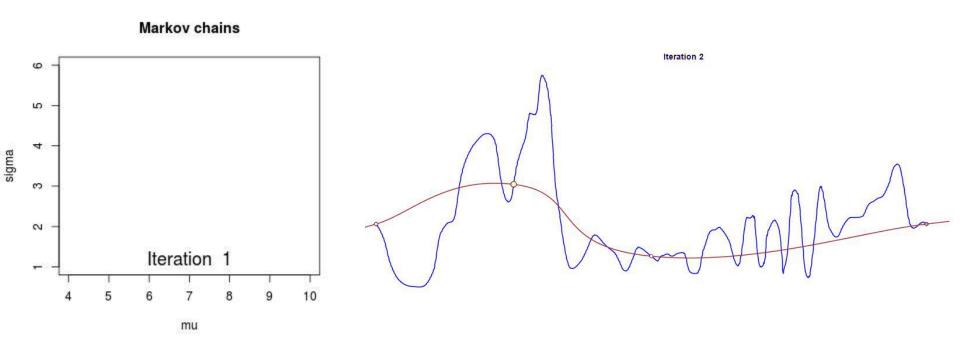
Traditional fitting takes ~10s of minutes to hours for one SN





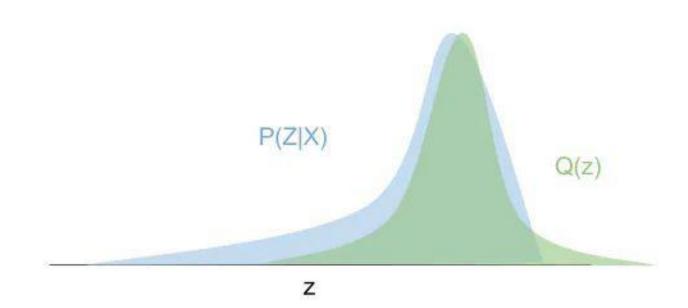


Traditional fitting takes ~10s of minutes to hours for one SN

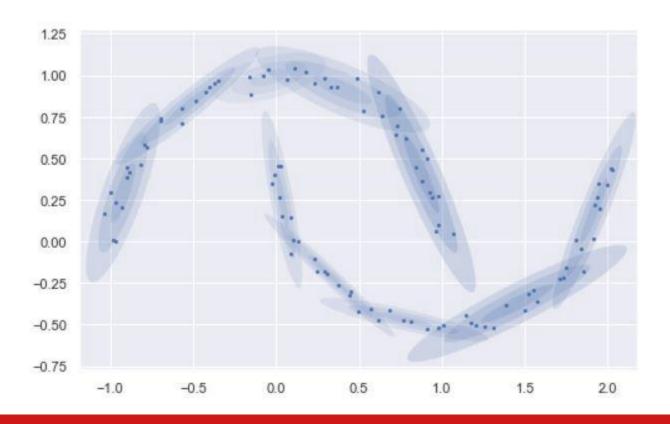


So the sample of 10 million SNe from Rubin will cost ~10 million CPU hours!

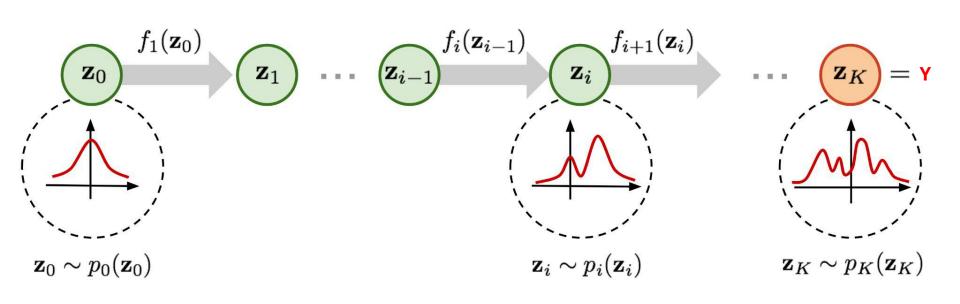
Replace traditional methods with variational inference

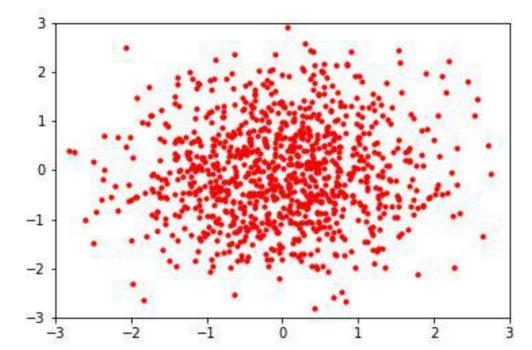


But if our samples have a complex distribution, it may take *many* Gaussians to estimate the density

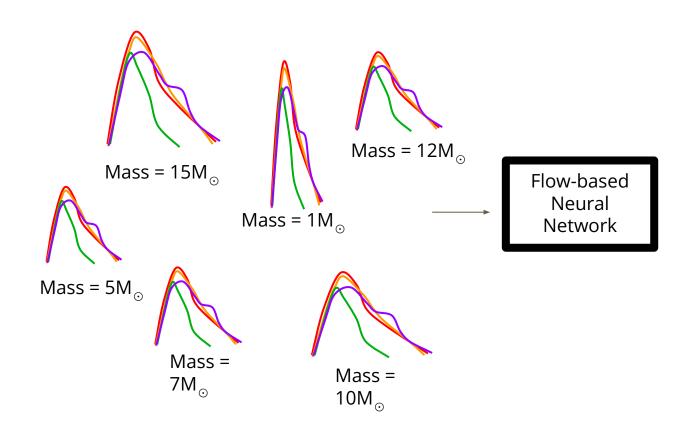


We are going to learn a (simple!) transformation to take a Gaussian to a complex distribution

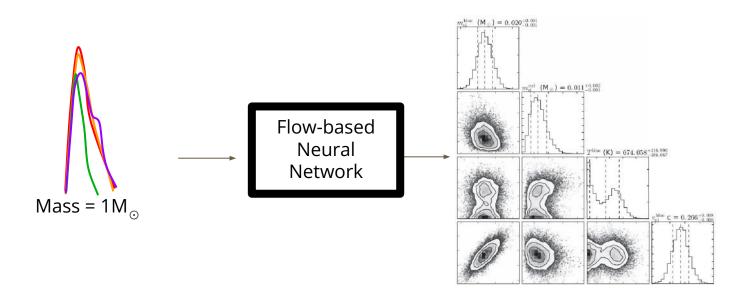




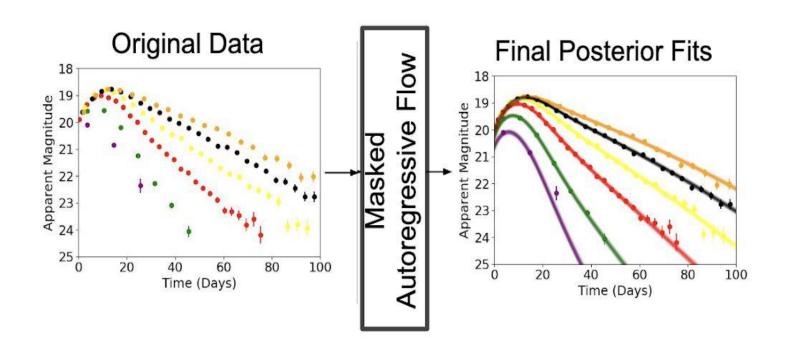
Simulation-based inference: Bypassing statistics via deep learning



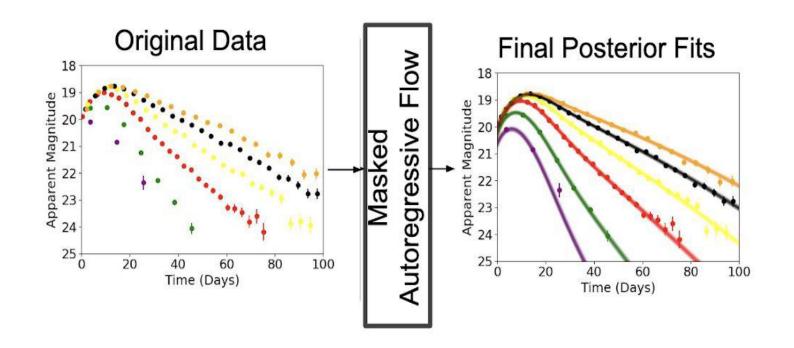
Simulation-based inference: Bypassing statistics via deep learning



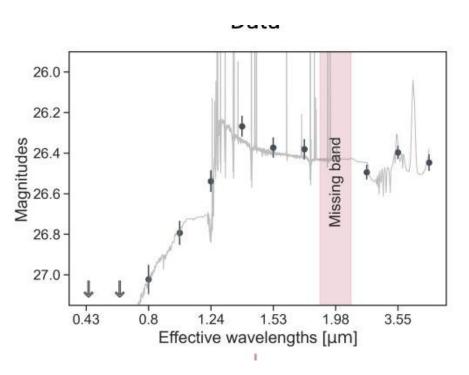
New method takes 10ms per SN...

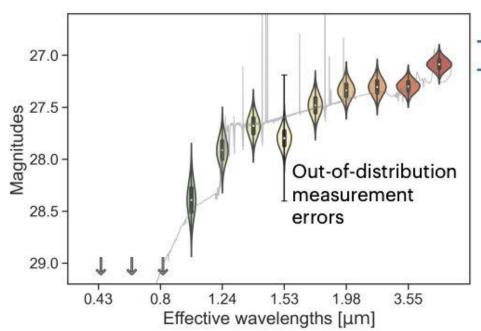


New method takes 10ms per SN... so about 1 day on a single CPU for the full set of Rubin SNe!

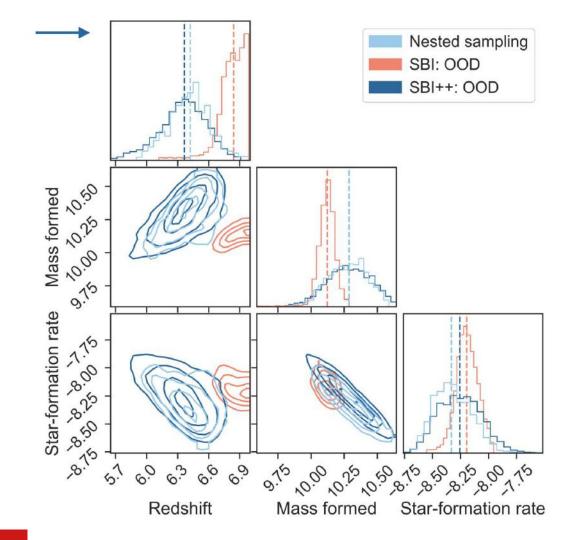


But real data is messy!

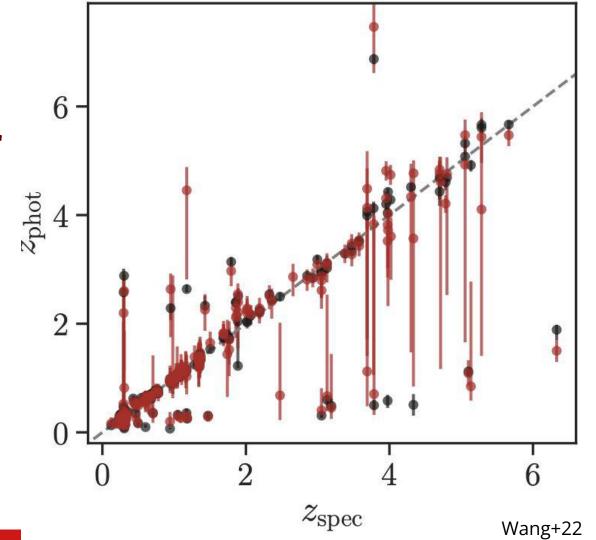




What if I have a poor understanding of the underlying noise?



SBI++ is (seemingly) better calibrated than standard nested sampling techniques in the literature!



Welcome to a new era for time-domain astrophysics!

- LSST will push our discovery rate of extragalactic transients to over 1 million objects per year
- By intertwining machine learning and our physical understanding of transients, we will be able to:
 - classify SNe into known classes
 - o identify needles (new, exciting physics) in real time
 - fully analyze the haystack at a computationally reasonable cost

Thank you!