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Particle physics data analysis in a nutshell
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« Simulation is ‘easy’ (but imperfect)
* |Inference is ‘hard’ as observable space is huge

» Lots of opportunity here for Al/ML - but beware the imperfections of the simulation



Particle physics data analysis in a nutshell

| ‘Summary
‘Monte Carlo sampling’ observables’

gy — f(x|p,0) — {x}—{vy}

Simulation

L(y|p,0) - {y}
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Overview

1. Source of uncertainty in the particle physics simulation chain
2. Anatomy of a typical LHC analysis — minimizing depedence on uncertainties
3. Statistical treatment of uncertainties - Frequentist concepts
4. Modeling of simulation uncertainties in the likelinood — general approach
5. Common issues with modeling of specific uncertainties

6. Summary & conclusion
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Why are simulation predictions uncertain?

However, ability to calculate SM prediction precisely

Standard Model some intrinsic uncertainty
varies very much depending on the regime evaluated

(through its 17 parameters) but these
are almost always irrelevant in practice

|14

N A
(j/ J\(/\A’ILV W

Each process calculable as infinite sum of amplitude
contributions

Tractable because contributions are a priori orderable,
pertubation series in powers of a (agy = 1/137)




Why are simulation predictions uncertain?

Standard Model some intrinsic uncertainty However, ability to calculate SM prediction precisely
(through its 17 parameters) but these varies very much depending on the regime evaluated
are almost always irrelevant in practice

|14

N A
q/ J\{/\A'ILV W

Each process calculable as infinite sum of
amplitude contributions

Not tractable when a not smalll,
e.q. for strong interaction a. depends on energy scale

E=91GeV E=1GeV
a,=0.12 a.= 0.5
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The (simplified) particle physics simulation chain

Simulation of a pp collision
at the LHC involves processes
at many energy scales

Different regimes require
separate calculation approaches
- Impemented as chain of
separate simulation packages



The (simplified) particle physics simulation chain

Proton Matrix Element calculation Parton showers Hadronization/Fragmentation
structure - g— b - e
. e T
\;: -'.:-:""4‘0.;;‘; \' . '\‘ e
E(s 1 GeV) E(~1 TeV) E(100 GeV ~1 TeV) E(s 1 GeV)
Non-perturbative Perturbative Perturbative Non-perturbative
('not calculable’) calculations calculations, ('not calculable’)
LO, NLO, NNLO, with factorization

sometimes N3LO

assumptions

Also important, but not shown here. simulation of

- Underlying Event (oroton parts not involved in hard collision)
- Color Reconnection events

- Addition collisions in the same bunch crossing (“pile up”)



The (simplified) particle physics simulation chain

structure

Proton Matrix Element calculation

Parton showers
/ &

>4

<
\Y<

Hadronization/Fragmentation

Estimation procedure
Uncalculable from theory.
All estimates based
on large-scale
fits to experimental data

Example uncertainties
Fit method and
statistical uncertainties




The (simplified) particle physics simulation chain

Proton Matrix Element calculation Parton showers Hadronization/Fragmentation
structure , — E
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Estimation procedure
Theory calculations
(Monte Carlo simulation,
or fixed-order calculation)

Example uncertainties
Missing higher orders




The (simplified) particle physics simulation chain

Proton
structure

Matrix Element calculation

Parton showers
/ &

>4

<
\Y<

Hadronization/Fragmentation

Ve % »
- L er

Estimation procedure
Perturbative parton
shower calculations

Example uncertainties

Matching of energy scale

to that of Matrix Element
calculations




The (simplified) particle physics simulation chain

Estimation procedure
Monte Carlo simulation
based on mostly empirical models
(Multiple implementation, with varying
degrees of tradeoff between concepts
and tuning)

Example uncertainties
Tuneable parameters with
poorly defined physical meaning
Disagreement between packages




The (simplified) particle physics simulation chain




The (simplified) particle physics simulation chain

Estimation procedure
GEANT4 or “fast simulation”

Example uncertainties

Many tuneable parameters
in physics model of GEANT4
(notable hadronic showers),
parametrized model for digitatization
of detector response




The (simplified) particle physics simulation chain

Estimation procedure
Separate custom-made
procedures for each particle type
(e,u,T, b/c/l-jets, Emss )

Example uncertainties
Wide ranging, including physics
simulation uncertainties and
measurement uncertainties
from data-driven calibrations.
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Is the simulation generally accurate?

e Despite (sometimes) decades of work on simulation packages, and amazing precision in many
measurements, some specific processes and kinematic regimes that are often crucial

appear really hard to be correctly modeled in simulation

e A handful famous/notorious examples

— QCD multijet production — the (by far) dominant process at the LHC
— is almost impossible to simulate as background.
(Multitude of physics and technical reasons for this)

— Differential distributions of top-quark pair kinematics —>

(a dominant background in many analysis)
very difficult to get right in simulation

— Simulated inclusive cross-section of processes like \VV+HF production
production rates are still off by O(40%) w.r.t observation despite
many advances in calculations

— Efficiency of most object-identification procedures (notably jet-related)
are multiplied with data-driven phase-space dependent correction
factors applied to simulation.

- Validation of simulation is generally not exhaustive
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Anatomy of a typical LHC analysis

e (iven the many caveat and approximations made in simulation,
try to be careful not to rely too much on its details (‘data driven analysis’)

e Jypically — HEP analysis is a two-step process

1. Data reduction
— Approximate modeling of simulation uncertainties generally acceptable

— In case of mismodeling, selection could be suboptimal,
but effects can be corrected for inference

—  ML/Al abundantly used here (mostly BDTs traditionally)
2. Inference

— Accurate modeling of simulation uncertainties crucial

eaa  ATLAS

25/ [l Background zZ"
¢ [ Background Z+jets, ff
20; D Signal (m =125 GeV)

H-zZ" >4l

— Mismodelling may bias result and/or underestimate uncertainties on final result

Events/5 GeV

[ % Syst.Unc.

— Extensive strategies to minimize influence of systematics,
e.g. large number of control and validation regions common, Fis-8TeV:[Lat=5.81b"
express results fiducial regions, perform calculations using ratios 10

15018 =7 TeV:[Ldt = 4.8 b \

— Extensive explicit modeling of simulation systematic uncertainties.

—  ML/Al use increasing 100 10200 el
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Anatomy of a typical LHC analysis
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Anatomy of a typical LHC analysis
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Anatomy of a typical LHC analysis
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Events/(10 GeV)

Anatomy of a typical LHC analysis

Yield Distribution

L(Nk|p,0) = l_[Poisson (Nk,r|lfk(ﬂ90)'f§’r(0)‘+

400 . Data  “\Total Unc. ATLAS
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r = Dbin index
K = region index

Wouter Verkerke, NIKHEF



Events/(10 GeV)

Anatomy of a typical LHC analysis
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Anatomy of a typical LHC analysis
“0) + ber0).

Sensitivity to simulation
modeling uncertainties




Anatomy of a typical LHC analysis - acceptance

Inclusive phase space (particle-evel) D

| Acceptance =

Measurement D

phase space

Large extrapolation - [arge sensitivity to modeling uncertainties

kl

Acceptance x Eff.
(relates reco-level
region Kk to particle-level

Wouter %H@@i@\@k%@f



Anatomy of a typical LHC analysis - acceptance

Inclusive phase space (particle-evel)

M. T Acceptance =
o r - l
I Measurement l _— —I
i Iphase space
| P -l

Small extrapolation - Smaller sensitivity to modeling uncertainties
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Anatomy of a typical LHC analysis — cross-sections
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Uncertainties in particle physics

H

Statistical methodology in particle physics is (very) predominantly frequentist
Notion of coverage is central in definition of uncertainties (68%, 95%)

Computational procedures for frequentist methodology quite different from those for Bayesian
influences practical aspects of how systematics uncertainties are modelled.



Frequentist uncertainties in particle physics fe )
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parameter

<

Frequentist approach — asymptotic approximation

LR asymptotically f(t I)
distributed as log(x?) f g t
and independent of Y

u,0bs

LR Acceptance /
Interval
tll
- y'/ Assumption

of asymptotics
("Wilks theorem”)
results in exactly
rectangular belt
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parameter

Frequentist approach - with nuisance parameters

Nuisance parameters
(to incorporate modeling
uncertainties) included in
profile likelihood ratio

. _ L(x|w)
“ o L(x|p)
. _ L(xlw
Y L(x|,0)

——

..V...l...|...|...|...|...

0o 1 2 3 4 5 6 7
| R test statistic




Frequentist approach — asymptotics & the profile likelihood ratio

_ L(x]|u,

t
o L(x|a, 0)

e Note 1:that t, in profile likelihood can in principle depend on values of 8 in hypothesis
— Practical approach at LHC = always assume values values 0

e Note 2: computation of t, is relatively cheap even if even if dimension of 8 is large

— No practical penalty on introducing many nuisance parameters.

— Many LHC analyses often have hundreds nuisance parameters, and often enough more than 1000

Wouter Verkerke, NIKHEF
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Modeling (simulation) uncertainties in the likelihood e
imple

e Simple data-driven

Events/(0.5)

L(s,b) = Poisson(Ngg | s + b) - Poisson(Neg | T - b) a

e [ully simulation-based £ DA

%O 82 84 86 88 90 92 94 96 98 100
X

L(s,b) = Poisson(Ngg| s + b) - Gauss( b, | b, G, sim)

e Realistic data-driven

L(s,b) = Poisson(Ngg| s + b) - Poisson(Ngg | T - b) - Gauss( Tsim | T5 Or sim)




Modeling (simulation) uncertainties in the likelihood

e (Generalization of modeling approach

L(s,b) = Poisson(Ngg| s + b) - Gauss( bgm, | b, O sim)

\

L(s,a) = Poisson(Ngg| s + b(a)) - Gauss(0 | a, 1)

/ \

”Response function” ”Subsidiary measurement”

Can be non-linear For additive systematics, can always
be reduced to a unit Gaussian

Alternatively:
Poisson - For systematic effects of a statistical nature
LogNormal — For multiplicative systematics where

a positive-definite NP is required



Modeling (simulation) uncertainties in the likelihood

e (Generalization of modeling approach

L(s,b) = Poisson(Ngg| s + b) - Gauss( bgm, | b, O sim)

L(s,a) = Poisson(Ngg| s + b(a)) - Gauss(0 | a, 1)

b(a)

/

+1

| 1 Empirical approximation of true response

« Sample simulation response at a=-1,0,+1
10 * Apply piece-wise linear interpolation
(or higher-order smooth functions if needed)

0.9

Wouter Verkerke, NIKHEF



Modeling (simulation) uncertainties in the likelihood
e (Generalization of modeling approach

L(s,b) = Poisson(Ngg| s + b) - Gauss( bgjm | b, Op sim)

¥

L(s, a4, a,) = Poisson(Ngg| s + b(ay, a,)) - Gauss( 0 | a4, 1)

/ - Gauss(0 | a,, 1)

e e Interpolated response function generalizes
gm e . easily to multiple nuisance parameters
q OIS .
§008 ..................................... : : |
oos|-— ' , Typically only ‘star topology’ sampled,
G004 .e. no correlation effects in response function
§00; Of a Siﬂ g| e blﬂ
h@? 1
05 e
05 ™, 05 L
-1.5 27 A5 4

Wouter Verkerke, NIKHEF



Modeling (simulation) uncertainties in the likelihood

e (Generalization of modeling approach to distributions

o=-1 a=0

a=+1

Piecewise linear M
interpolation ok

response model
for a one bin

0 82 84 8 88 90 92,94 96 98 100

XX

~N 00 ©

W H O

o o /d0323x8.08)
te)

PO\

&3

Bin-by-bin piece-wise interpolation
robust enough for small-to-moderate distortions
typically introduced by systematic variations



Modeling (simulation) uncertainties in the likelihood

e Modeling uncenrtainties across regions — choice of correlated or uncorrelated
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Modeling (simulation) uncertainties in the likelihood

e Modeling uncenrtainties across regions — choice of correlated or uncorrelated
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Modeling (simulation) uncertainties in the likelihood

In a complete analysis there will be e '“
many nuisance parameters, with e ™

typical number ranging from 100-1000

Number driven by approach g
to break down uncertainties into

individual sources that map to

known concepts in theory or detector

RS N g e

NP correlation scheme is always »
a major point of attention, Control Region . - g - |
as for many modeling systematics it is Foe ] J oo R b e
not always clear if source uncertainties
are correlated or uncorrelated across kinematic regions

Fartial correlations in individual sources/INPs uncommon.
In NP groups that collectively describe a systematic uncertainty source, partial correlations are

modeling through mix of correlated and uncorrelated components



Implementing “appropriately conservative” uncertainties

e Correlation model of NPs can present host of thorny issues
if there is no clear guidance from systematic source

e |llustration with ‘2-bin" analysis

S1
S2
B1 B2

NP: 10% bkg uncertainty
correlated modeling

POl < S1+S2 Conservative

S1
S2
B1 B2

NP1: 10% bkg unc. — bin 1
NP2: 10% bkg unc. — bin 2

Appropriate?

S1
S2
B1 B2

NP: 10% bkg uncertainty
anti-correlated model

Very Optimistic



Implementing “appropriately conservative” uncertainties

e Beware propagation of constraining effects of high-statistic measurements
through correlation modeling assumptions

Data
Uncertainty

1 NP representing 10% bkg uncertainty
correlated effect in both bins

~ e

ore fit’

i

ML fit

)

oSt fit’

B

-+

1 NP representing 5% bkg uncertainty
correlated effect in both bins

Uncertainty reduction in both bins
through contraining power of bin 1



Implementing “appropriately conservative” uncertainties

e Beware propagation of constraining effects of high-statistic measurements
through correlation modeling assumptions

Data
Uncertainty

1 NP representing 10% bkg uncertainty
correlated effect in both bins

~ e

ore fit’

1

ML fit

)

oSt fit’

B

5y

NP1 representing 5% lbkg uncertainty
NP2 representing 10% lbkg uncertainty

No uncertainty reduction in binZ2
through constraining power of bin 1



Implementing “appropriately conservative” uncertainties

e Beware propagation of constraining effects of high-statistic measurements

through correlation modeling assumptions

e |f correlation assumption between
regions well motivated
- smart analysis strategy

« |f no clear (physics) motivation behind
correlation assumption then
uncertainty reduction on POl may be
spurious —» attention needed!

« Diagnostics on constraining of NPs
in data vital part of analysis

oSt fit’

B

-+

1 NP representing 5% bkg uncertainty
correlated effect in both bins

Uncertainty reduction in both bins
through contraining power of bin 1



Implementing “appropriately conservative” uncertainties

e Beware propagation of constraining effects of high-statistic measurements
through correlation modeling assumptions

« But beware that decorrelating is not

necessarily conservative, effective /N St S2 S1 S2
reduction of ‘sum POI's
« Notably for many theory uncertainties —T— —T— —T— —T—
nuisance parameters are ‘proxies’ with
no proper connection to actual B1 B2 B1 B2
calculation
NP: 10% bkg uncertainty  NP1: 10% bkg unc. — bin 1
«  Notion of correlation model is ill-defined correlated modeling NP2: 10% bkg unc. — bin 2
IN many theory systematics,even
discussion on what quantity uncertainty ‘

applies (fenvelope’ or integral) Effective 7% bkg uncertainty

on POl e« S1+52




Overview

1. Source of uncertainty in the particle physics simulation chain
2. Anatomy of a typical LHC analysis — minimizing depedence on uncertainties
3. Statistical treatment of uncertainties - Frequentist concepts
4. Modeling of simulation uncertainties in the likelihnood — general approach
5. Common issues with modeling of specific uncertainties

6. Summary & conclusion

Wouter Verkerke, NIKHEF



Parameteric modeling of systematic uncertainties

Finding a parametric model for systematic uncertainties nuisance parameters
that can over the ‘true’ distribution is the ultimate goal

— But given that the true distribution is unknown, it is not a very practical goal

— Instead aim to inventorize all known source of uncertainty, formulate parametric uncertainty model for them
(response functions & subsidiary measurements) and implement them in the likelihood of a measurement

Easiest class of systematic uncertainties are those based on measurements,
out where the data are not part of the analysis dataset

— Parametrization often physics- or detector motivated

Events/(0.5)

— Uncertainties on parameters have clear statistical interpretation

— Main concern is any additional uncertainty 80
on the ‘transport factor’ to the measurement space

— In HEP these are usually called ‘good’ systematics sof-

i

%0 82 84 86 88 90 92 94 I 96 98 100
X

Wouter Verkerke, NIKHEF



Parameteric modeling of systematic uncertainties

e Difficult class of systematic uncertainties are those based on
shortcomings of theory calculations, with no relation to data

— Only a general notion of the uncertainty is indicated, no meaningful parametric form of the uncertainty
— No clear probabilistic intepretation of uncertainty prescription is provided

— In HEP these are usually called ‘ugly’ systematics
e ‘Ugly’ systematic prescriptions generally come in one of two forms

Envelope 2-point

L~

two equivalent incompatible realizations of a simulation step,

No prescription of parametric form inside envelope with missing or incomplete intrinsic uncertainty specification




Proton structure - parton density models

e Proton density functions are effectively an experimental measurement
= highly complex fits to large numbers of datasets
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Proton structure - parton density models

e Proton density functions are effectively an experimental measurement
- highly complex fits to large numbers of datasets

e Detailed parametrization provided prefit ‘postfit’
(O(40) parameter Hessian — or replica sets, S oI & ¥ oI
a di PDF fitt] llab 1 X 1.85—1/7MM=H!I'.194GeV ATLAS 3 % 1.8:—99MM—H!|"$4G;‘¢’>fned ATLAS
epending on itting collaboration § 1 Lo _ § 1o Lo
1.6 - .6
e Generally considered a ‘good’ systematic, % 145 1 %
parametric even used to constrain PDF ———» % 1 e
' ‘ ' . 1R - 1
uncertainties from fits to physics data sl _ st
e But multiple PDF sets exist, that do not RS iy
perfectly agree with each other e e T RS I gl e
10° 10 )(10'1 10° 102 )(10'1

Proton
structure




Hard Scatter - Missing Higher Orders

Leading uncertainty in hard scatter amplitude calculate (‘Matrix Element’)
's the incompleteness of the perturbative expansion of the calculation

— Calculation is truncated in expansion loops or legs at some point and therefore incomplete.

— Shape of missing part is — since it is presently uncalculable — unknown.
Magnitude of effect of missing part of calculation can be
approximately estimated through variation of ‘scale parameters’

— Factorization and renormalization scales (Ur Ug) are unphysical parameters
in the calculation, but the dependence of incomplete calculations on their value

Envelope

gives and indication of how far off the calculation is from the ‘full answer’

— Agreed evaluation procedure (empirical): consider for each separate

0.5x, Tx and 2x nominal (& product also in this range) = 7 (Ug,HR) configurations//'

— Envelope spanned by 7 variants of calculation is uncertainty prescription

No prescription of parametric form inside envelop

— No assumptions on correlation structure inside phase-space should be made

Matrix Element calculation

» <z B i 5 WA




Hard Scatter - Missing Higher Orders

e | eading uncertainty in hard scatter amplitude calculate (‘Matrix Element’)
's the incompleteness of the perturbative expansion of the calculation

NNLOJET pp— Z+X, y, inclusive Vs =8 TeV NNLOJET pp—> Z+X, y, inclusive Vs=8TeV
<El :_ —4— ATLAS data 8 <€ . :_ [T NLO uncorrelated 3 Exam . |e : o
osF- EE LO . 0.5 Il NLO correlated 1  Evolution of ME prediction
- IO g . I NNLO mcorzelated 1  with calculation order
06—=—NNLO - — 0.6/— Il NNLO correlated —
B 58 : - = -
04l .. IR = 04 — B
- !*' T ] C — .
0.2_— ...... ;J -] 0.2_— - =
[~ i = o8 2 : N ——— ]
! i e R L i v s S s T T S G s
; E ; - ]
L E a4 X
o E 2 ( : 2
& “ & \08 =
- N - _
~_ 20 100 500
Semmm==” pT’Z[GeV]

e
-'\ )

{
A i
i e % M A
3 & : W S
Trragys e i
- DAt
N S




Hard Scatter - Missing Higher Orders

e | eading uncertainty in hard scatter amplitude calculate (‘Matrix Element’)
's the incompleteness of the perturbative expansion of the calculation

Correlation model scale uncertainties
1 NP (constraining?), 2 NP (/2 red on int. unc?)

Envelope

______

Beware of special modeling situations

e.qg. Stewart-Tackman prescription
across jet-counting boundaries

jet veto

U(’j
inclusive = 0-jet exclusive

i

Resummation uncertainty
Scale uncertainty

Uy

1-jet exclusive

—

jet veto

Ho

>2-jet inclusive
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Showering Monte Carlo

numbers of the same package)

'g i iAa;a uncertainty ' ATU‘S'
= 1 4L — PYTHIAB 4C
:% L[] eytHiAs Az
e Parton showers and Hadronization/Fragmentation &0
typically integrated into a single package Example 1 ¥
- Multiple equivalent implementations available Pythia retuning 0ol
. . or early LHC data - .
(Herwig, Pythia, Sherpa...) errenfuasers
102 10" 1
— Non-perturbative physics process is (semi-Jempirically zor
modeled, and extensively tuned to available data Example 2 5110 g oiarer " —v— prives asebrro ]
. . . Differences in ..8 | anti-k, A=0.4 —a&— Pythiag AU2-CTEQ6L1 i
— No (complete) set of internal systematic uncertainty . =S 7 —— Pythia8 4C-CTEQ6L1 _-
- . H@l’WIg/ Pythia g 1.1 —e— Pythia A14-NNPDF2.3L0 ]
prescriptions available for packages edictions 3 B agiytiedniusdd
o . 2 ‘ E - —5— Herwig++ UE-EE-5-MSTW2008L0 -
— Prediction results can strongly disagree between packages for jet-gap  $1:05( ]
(and sometimes even within version fractions £
g
o
5
b

o
©
(3}

5 ATLASSimuIationl
2x102 10° 2x10°

p, [GeV]




Showering Monte Carlo

Given that dominant effect is difference

between packages, usually a ‘2 point systematic’

Parametric implementation in likelinood
models have additional pitfalls.

For scalar predictions (counting experiments),

L(Ngr) = Poisson(Ngg|s+b(a)) - Gauss(0|a,1)

The response function is trivial. >

The subsidiary measurement is not necessarily

— Common choice is a Gaussian centered on one prediction,
with alternative generator at 1 sigma away (symmetrized)

— Probabilistic interpretation assigned to generators are
usually assumptions

IR

’ﬁj o4

L

~¥

Background rate > b

2-point

Nuisance parameter = Qgen




Showering Monte Carlo

Modeling of 2-point systematics for differential predictions (shapes) fraught with many more issues

The response function is a/lso not trivial. Brute-force 1-parameter shape interpolation common choice,
but no guarantee that has the flexibility to cover Nature or alternative predictions

‘Modeling space’

Modeled uncertainty
(with 1 parameter)
assumes that ‘nature’
Is on the line’

Pythia

Events / (1 x 0.025)

Next years
generator




Showering Monte Carlo

Modeling of 2-point systematics for differential predictions (shapes) fraught with many more issues

Constraining of 2-point systematic nuisance parameters ‘doubles down’ on assumption that all
modeling uncertainty can be captures with an empirical 1-parameter model. Rarely justifiable

Yet constraining of MCgenerator
systematics from the data often
occurs in analysis = almost all
SRs, CRs are sensitive to it

‘Modeling space’

Pythia
— Introducing separate NPs for regions o Nature
helps, but is not ideal
O Sherpa
Way forward is development of Next yetars O
full prescription of modeling generator Heril8

uncertainties for each generator

— There is progress, but slow

bl




Experimental systematic uncertainties relate data/simulation differences.

Experimental systematic uncertainties

Almost always based on measurement of (high-statistics) control samples

Data/simulation differences removed (to 1st order) through correction functions

Measurement uncertainties propagated as experimental uncertainties

Experimental systematics mostly of the ‘good’ type

Parametric structure largely motivated by physics/detector considerations

Uncertainties on parameters have clear probabilistic interpretation

But beware some ‘ugly’ corners.

Difficult simulation uncertainties (b-quark fragmentation)

may influence measurement of certain experimental uncertainties

Measurement on
calibration data (e.g. jet-y balance)

N

Calibration with parameterization
and correlation structure motivated by
underlying measurement

ATLAS anti-k, R = 0.4, EM+JES + in situ
Data 2015, \s =13 TeV (') = (0.0,0.0)
s

5—/&'

Py [GeV)
orrelation

7O

2x10? 10° 2x10°
;' [GeV]

10°

20 30

Detector simulation

Object Reco & ID




Experimental systematic uncertainties

e But beware of (intentional) limitations to accuracy of nuisance parameter model

— Underlying model of calibration uncertainties often highly complex (>100 NP no exception)
— But for many analyses high level of complexity not needed (e.g. a 1-bin counting experiments can use 1 NP)
—  (Multiple) simplified representations of uncertainty model are often provided

Simplified model

iginal tati | |
Original representation Eigenvector transformed (truncated EV basis)

ATLAS anti-k, A = 0.4, EM+JES + in situ
Data 2015, \s =13 TeV  (f*"'*?) = (0.0,0.0)

s i

= | Vi V

W10° 8 E 11

E 7O V
: V' = 2 V " = me
Vi, /
v Merger of
44 weakest modes

20 30 10° 2x10° 10* 2x10°
P2 [GeV]

e Beware that not everything is quantified or measured

— For example “correlation of systematic uncertainties between 65% and 75% b-tagging operating points” may not be known.

Detector simulation Object Reco & ID




Validation & Diagnostics

Extensive diagnostics of (often complex) fits Nuisance parameter
to LHC data crucial for validation ranking plots
Scale for POl impact
| !“ 1
-04 -02 0 0.2 0.4

N REURLZILIN I I LTI ILGRURLIN I
ATLAS Preliminary
Vs =13TeV, 13.2fb"

Relative impact of
+10 NP variation on PO

Jet-vertex association

A 280Thagd/3¢ non-prompt sample variation
ttH acceptance (QCD scale)
2801ha4/38 non-prompt e transfer factor
Pileup modeling

281 1phag Non-prompt normalization

N PS raﬂ Ked ttH cross section (QCD scale)
H ttW acceptance (QCD scale)
in order of -

Jet Energy Scale variation 1
| m DaCJ[ ttW acceptance (NLO vs LO)

280Thag/3¢ non-prompt p transfer factor
ttW cross section (QCD scale)
Luminosity

280Thag ep non-prompt CR stat.

Jet Energy Scale (flavor composition)




Validation & Diagnostics

Extensive diagnostics of (often complex) fits
to LHC data crucial for validation

Ap
-04 -02 0 02 04

Jet-vertex association

280Thagd/3¢ non-prompt sample variation
ttH acceptance (QCD scale)
2801ha4/38 non-prompt e transfer factor
Pileup modeling

281 1hag Non-prompt normalization

ttH cross section (QCD scale)

ttW acceptance (QCD scale)

Jet Energy Scale variation 1

W acceptance (NLO vs LO)
280Thag/3¢ non-prompt p transfer factor
ttW cross section (QCD scale)
Luminosity

2807thaqg ep non-prompt CR stat.

Jet Energy Scale (flavor composition)

L WEURELTRE N I SRR TREUEA T WL T
ATLAS Preliminary
Vs =13 TeV, 13.2 fb

Nuisance parameter
ranking plots

Pull of NP in fit
to observed data

value O = no bias

No reduction
uncertainty =1 - of uncertainty
w.r.t input spec.

-15 -1 -05 0 05 1 15
(6-6,)/A0

Scale for' NP pull




Validation & Diagnostics

e Extensive diagnostics of (often complex) fits Nuisance parameter
to LHC data crucial for validation ranking plots
An
‘Modeling space’ 06 04 02 0 02 04 06 NP with 10x reduced
- : uncertain
_> Parton Shower generator /// . / ty
B)!ibiéi Nature
. SN JES: flavour composition - :
O Sherpa JES: Eff1 .

Next years O
generator

Highlights point of attention:
difficult modeling uncertainty
strongly reduced in fit to data
-2 investigate

tt VFSR

Luminosity

Wt ME generator

JES: 1y intercal. model

PDF central value
JES: pileup p

b-jet efficiency scale fac. 0

ATLAS .

{s=13TeV,3.2b" Pre-fit Impact on
7/ / / % Post-fit Impact on p
1111 I | | I | B0 Rt I § I I | l | 5 I B | I | G [0 I |
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Overview

1. Source of uncertainty in the particle physics simulation chain
2. Anatomy of a typical LHC analysis — minimizing depedence on uncertainties
3. Statistical treatment of uncertainties - Frequentist concepts
4. Modeling of simulation uncertainties in the likelihnood — general approach
5. Common issues with modeling of specific uncertainties

6. Summary & conclusion
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Proton structure

L2

Matrix Element calculation

= 2

Parton showers

A

i

Hadronization/Fragmentatiory

;—,

Detector simulation

Summary & conclusions

Simulation of LHC events incredibly powerful tool, driving analysis design & inference

Despite a decade of use, with advances in tools & methods, and very extensive validation efforts,
still many cormners of phase-space where modeling is quite imperfect

Some are known since years and simply hard to fix, but new ones are being discovered all the time as
new analysis rely ever more on the details of simulated events. Use of ML/AI will accelerate this trend

Extensive strategies exist to minimize dependence on simulation modeling uncertainties

Clever formulation of analysis goals (‘fiducial regions’), clever use of theoretical predictions (‘ratio corrections’)
Extensive use of control regions to validate and correct for any mismodellings at the analysis level

Extensive use of object-level correction functions correct for data/simulation disagreements

Detailed modeling of simulation systematics in inference stage indispensible

Fairly straightforward for ‘good’ type of systematics (based on measurement)

Thorny issues on definition and interpretation for ‘ugly’ type of systematics (mostly of a theoretical nature)

Validation of results & statistical models indepensable for robust results

Exploitation of simplistic parametrizations of ‘ugly’ systematics can easily lead to spurious improvements of results

But careful design of analysis strategy can help to avoid ‘getting stuck’ being dominated by ‘ugly’ systematics



