

THE FUTURE OF HYDROGEN IN COMMERCIAL AVIATION: AN ECONOMIC AND EMISSIONS ANALYSIS OF JET FUEL ALTERNATIVES

Clare Callahan¹ Hannah Brown¹ Sang Hyun Ma² Adrielle Cailipan²

¹CMU Heinz College, ²CMU Energy Science, Technology & Policy

MOTIVATION

- > Passenger aviation is one of the highest CO₂ emitting forms of travel.
- > Hydrogen (H₂) is more energy dense by weight than existing jet fuels and offers a potential fuel-based solution for aviation to continue use of combustion based flight.
- > Hydrogen production processes vary in cost and CO₂ intensity and need to be critically examined.

RESEARCH QUESTION

How much can the average passenger save on emissions for a flight from NYC to London using a hydrogen-powered concept plane (Airbus ZEROe) rather than a conventional A-1 jet fueled-plane?

STUDY DESIGN

- Selected one of busiest international flights, New York City (JFK)
 → Heathrow (LHR, London).
- > Annually, this 3,470 mile trip^[3] is taken over 14,000 times^[6], on average.
- ➤ Boeing 787-9, a newer and more fuel efficient plant, is one of most frequent planes to make the trip.
- Airbus concept ZEROe
 Turbofan plane fueled by
 hydrogen combustion
 was used as comparison.
- Capital/ R&D costs of ZEROe were not included in this analysis.

Photo: ©AIRBUS 2020

Types of hydrogen, characterized by production pathway:

- ➤ **Green** Electrolysis powered by renewables (for this study, electrolysis powered by wind).
- ➤ Blue Steam methane reformation from natural gas with 90% carbon capture and sequestration (SMR with 90% CCS).
- > Grey Steam methane reformation from natural gas without carbon capture and sequestration (SMR without CCS).

PLANE SPECIFICATIONS	Boeing 787-9 ^[2] Airbus ZEROe		
Number of passengers	216	200	
Fuel Type	A-1 jet fuel	liquid hydrogen	
Fuel Energy Intensity (MJ/kg)	43.28	120	
Fuel Consumption	5,600 kg/hr	TBD	
Average Speed	593 mph	Avg. 600 mph	

METHODOLOGY & ASSUMPTIONS

- ➤ The necessary fuel needed to get the plane from JFK to LHR was calculated based off Boeing 787-9 fuel consumption rates.
- The minimum energy needed for the flight was found; the Airbus ZEROe was assumed to operate similarly to that of the 787-9.
- ➤ The volume of liquid H₂ required for the flight was calculated to be greater than that of A-1 jet fuel; however, liquid H₂ was significantly lighter in total weight. We assume additional equipment to store and cool the liquid H₂ will not exceed the weight savings.
- The emissions for jet A-1 fuel and the three H₂ types were calculated using life cycle assessment data ^[13] or extrapolated. ^[12]
- The H₂ fuel prices are reported purely as production prices which consider production and liquefaction costs. H₂ sale data, is currently limited; however, price points identified fall within production cost ranges.^[14]
- The ticket prices were extrapolated from the average plane ticket price from JFK to LHR such that fuel is equal to approximately 18% of the total ticket price.

RESULTS

PER PASSENGER EMISSIONS AND FUEL COSTS FROM JFK TO LHR

EMISSIONS	A-1 Jet Fuel	Grey H ₂	Blue H ₂	Green H ₂
Flight emissions (metric tonnes CO ₂)	122	109	57	0
Flight emissions per MJ (kg CO ₂ / MJ)	0.085	0.076	0.04	0
Price of fuel ^[12] (\$/kg)	\$0.56	\$2.08	\$2.27	\$5.96
Passenger emissions (kg CO ₂ / passenger-mile)	0.163	0.157	0.083	0

Average plane ticket from JFK to LHR^[10]:

to LHR^[10]:

Grey H, plane ticket:

\$8

Blue H₂ plane ticket: \$880

Green H₂ plane ticket: \$2,188

CONCLUSIONS

Today an H_2 -powered flight from JFK-LHR could cost less than a business class flight for a 4-100% reduction in emissions. Grey H_2 , with a 4% emissions reduction will not significantly reduce air-travel emissions; however, if the aviation industry waits for green hydrogen cost-competitiveness before H_2 integration we may not see significant reductions in emissions from air travel for more than two decades. With only a 40% reduction in cost, Blue H2 can offer a comparably priced ticket as current jet-fuels and a 47% reduction in emissions. Blue H_2 may offer a stop-gap and significantly reduce air travel emissions while the industry awaits the anticipated 60% reduction in the cost of H_2 by 2030.

REFERENCES

- 1. https://alliknowaviation.com/2019/12/14/fuel-consumption-aircraft/
- 2. https://www.britishairways.com/en-it/information/about-ba/fleet-facts/boeing787-9
- 3. https://www.airmilescalculator.com/distance/jfk-to-lgw/
- 4. https://hypertextbook.com/facts/2003/EvelynGofman.shtml
- 5. https://www.energy.gov/eere/fuelcells/hydrogen-storage
- 6. https://www.forbes.com/sites/ericrosen/2019/04/02/the-2019-list-of-busiest-airline-routes-in-the-world/
- 7. https://centurionair.mv/jet-a1-fuel-conversion-chart/
- 8. https://energies.airliquide.com/resources-planet-hydrogen/how-hydrogen-stored
- 9. https://globaloilandgastrading.com/aviation-fuel-jetfuel-1
- 10. https://www.cheapflights.com/flights-to-england/new-york/
- 11. https://www.csis.org/blogs/energy-headlines-versus-trendlines/how-much-does-us-lng-cost-europe
- 12. https://www.energy.gov/sites/prod/files/2020/07/f76/USDOE_FE_Hydrogen_Strategy_July2020.pdf
- 13. http://www.nata.aero/data/files/gia/environmental/bllcghg2005.pdf
- 14. https://www.spglobal.com/platts/en/our-methodology/price-assessments/natural-gas/hydrogen-price-assessments