THE FUTURE OF HYDROGEN IN COMMERCIAL AVIATION: AN ECONOMIC AND EMISSIONS ANALYSIS OF JET FUEL ALTERNATIVES Clare Callahan¹ Hannah Brown¹ Sang Hyun Ma² Adrielle Cailipan² ¹CMU Heinz College, ²CMU Energy Science, Technology & Policy #### **MOTIVATION** - > Passenger aviation is one of the highest CO₂ emitting forms of travel. - > Hydrogen (H₂) is more energy dense by weight than existing jet fuels and offers a potential fuel-based solution for aviation to continue use of combustion based flight. - > Hydrogen production processes vary in cost and CO₂ intensity and need to be critically examined. # RESEARCH QUESTION How much can the average passenger save on emissions for a flight from NYC to London using a hydrogen-powered concept plane (Airbus ZEROe) rather than a conventional A-1 jet fueled-plane? #### STUDY DESIGN - Selected one of busiest international flights, New York City (JFK) → Heathrow (LHR, London). - > Annually, this 3,470 mile trip^[3] is taken over 14,000 times^[6], on average. - ➤ Boeing 787-9, a newer and more fuel efficient plant, is one of most frequent planes to make the trip. - Airbus concept ZEROe Turbofan plane fueled by hydrogen combustion was used as comparison. - Capital/ R&D costs of ZEROe were not included in this analysis. Photo: ©AIRBUS 2020 Types of hydrogen, characterized by production pathway: - ➤ **Green** Electrolysis powered by renewables (for this study, electrolysis powered by wind). - ➤ Blue Steam methane reformation from natural gas with 90% carbon capture and sequestration (SMR with 90% CCS). - > Grey Steam methane reformation from natural gas without carbon capture and sequestration (SMR without CCS). | PLANE SPECIFICATIONS | Boeing 787-9 ^[2] Airbus ZEROe | | | |-------------------------------|--|-----------------|--| | Number of passengers | 216 | 200 | | | Fuel Type | A-1 jet fuel | liquid hydrogen | | | Fuel Energy Intensity (MJ/kg) | 43.28 | 120 | | | Fuel Consumption | 5,600 kg/hr | TBD | | | Average Speed | 593 mph | Avg. 600 mph | | #### METHODOLOGY & ASSUMPTIONS - ➤ The necessary fuel needed to get the plane from JFK to LHR was calculated based off Boeing 787-9 fuel consumption rates. - The minimum energy needed for the flight was found; the Airbus ZEROe was assumed to operate similarly to that of the 787-9. - ➤ The volume of liquid H₂ required for the flight was calculated to be greater than that of A-1 jet fuel; however, liquid H₂ was significantly lighter in total weight. We assume additional equipment to store and cool the liquid H₂ will not exceed the weight savings. - The emissions for jet A-1 fuel and the three H₂ types were calculated using life cycle assessment data ^[13] or extrapolated. ^[12] - The H₂ fuel prices are reported purely as production prices which consider production and liquefaction costs. H₂ sale data, is currently limited; however, price points identified fall within production cost ranges.^[14] - The ticket prices were extrapolated from the average plane ticket price from JFK to LHR such that fuel is equal to approximately 18% of the total ticket price. #### **RESULTS** #### PER PASSENGER EMISSIONS AND FUEL COSTS FROM JFK TO LHR | EMISSIONS | A-1 Jet
Fuel | Grey
H ₂ | Blue
H ₂ | Green
H ₂ | |---|-----------------|------------------------|------------------------|-------------------------| | Flight emissions (metric tonnes CO ₂) | 122 | 109 | 57 | 0 | | Flight emissions per MJ
(kg CO ₂ / MJ) | 0.085 | 0.076 | 0.04 | 0 | | Price of fuel ^[12] (\$/kg) | \$0.56 | \$2.08 | \$2.27 | \$5.96 | | Passenger emissions (kg CO ₂ / passenger-mile) | 0.163 | 0.157 | 0.083 | 0 | Average plane ticket from JFK to LHR^[10]: to LHR^[10]: **Grey H**, plane ticket: \$8 Blue H₂ plane ticket: \$880 Green H₂ plane ticket: \$2,188 ## CONCLUSIONS Today an H_2 -powered flight from JFK-LHR could cost less than a business class flight for a 4-100% reduction in emissions. Grey H_2 , with a 4% emissions reduction will not significantly reduce air-travel emissions; however, if the aviation industry waits for green hydrogen cost-competitiveness before H_2 integration we may not see significant reductions in emissions from air travel for more than two decades. With only a 40% reduction in cost, Blue H2 can offer a comparably priced ticket as current jet-fuels and a 47% reduction in emissions. Blue H_2 may offer a stop-gap and significantly reduce air travel emissions while the industry awaits the anticipated 60% reduction in the cost of H_2 by 2030. ### REFERENCES - 1. https://alliknowaviation.com/2019/12/14/fuel-consumption-aircraft/ - 2. https://www.britishairways.com/en-it/information/about-ba/fleet-facts/boeing787-9 - 3. https://www.airmilescalculator.com/distance/jfk-to-lgw/ - 4. https://hypertextbook.com/facts/2003/EvelynGofman.shtml - 5. https://www.energy.gov/eere/fuelcells/hydrogen-storage - 6. https://www.forbes.com/sites/ericrosen/2019/04/02/the-2019-list-of-busiest-airline-routes-in-the-world/ - 7. https://centurionair.mv/jet-a1-fuel-conversion-chart/ - 8. https://energies.airliquide.com/resources-planet-hydrogen/how-hydrogen-stored - 9. https://globaloilandgastrading.com/aviation-fuel-jetfuel-1 - 10. https://www.cheapflights.com/flights-to-england/new-york/ - 11. https://www.csis.org/blogs/energy-headlines-versus-trendlines/how-much-does-us-lng-cost-europe - 12. https://www.energy.gov/sites/prod/files/2020/07/f76/USDOE_FE_Hydrogen_Strategy_July2020.pdf - 13. http://www.nata.aero/data/files/gia/environmental/bllcghg2005.pdf - 14. https://www.spglobal.com/platts/en/our-methodology/price-assessments/natural-gas/hydrogen-price-assessments