Algebra basic exam, January 2024

180 minutes

- (a) Show that an integral domain with finitely many elements is a field.
- (b) Show that the multiplicative group of a finite field is cyclic.
- 2. PART I. (10 points)

Let G be a finitely generated group with the generator set g_1, \ldots, g_m . Let H be a subgroup of G of finite index. Let Hx_1, \ldots, Hx_n be all the right cosets of H, with $x_1 = 1$.

- (a) Show that, for each i, j, there is $h_{i,j} \in H$ satisfying $x_i g_j = h_{i,j} x_r$ for some r = r(i, j).
- (b) Show that the group H is finitely generated by proving that the set $\{h_{i,j} : i = 1, 2, ..., n, j = 1, 2, ..., m\}$ generates H.

PART II. (10 points)

Recall that a group is *torsion* if every element of the group has finite order. Let G be a finitely generated solvable torsion group. Prove that G is finite. [Hint: start by proving that abelianization of G is finite. Then use Part I. You may assume Part I even if you did not solve it.]

- 3. (10 points) Let F be a subfield of \overline{Q} that is maximal among all subfields not containing $\sqrt{2}$. Let E/F be a Galois extension of F with $E \neq F$.
 - (a) Prove that $F(\sqrt{2})$ is the unique subfield of E that is a degree-2 extension of F.
 - (b) Prove that $\operatorname{Gal}(E/F)$ is cyclic.

[You do not need to prove the existence of fields E and F satisfying the conditions in this problem.]

- 4. (10 points)
 - (a) Define the term "Noetherian ring"
 - (b) Let R be a Noetherian ring, and let S be a multiplicative subset of R. Show that the ring $S^{-1}R$ is Noetherian.

^{1.} (10 points)