Basic Examination: Measure and Integration January 2016

- This test is closed book: no notes or other aids are permitted.
- You have 2 hours. The exam has a total of 4 questions and 100 points (25 each).
- You may use without proof standard results from the syllabus which are independent of the question asked, unless explicitly instructed otherwise. You must, however, clearly state the result you are using.

Below, if not stated explicitly, (X, \mathcal{F}, μ) is a measure space, $L_{p}=L_{p}(X, \mathcal{F}, \mu)$ is the standard L_{p} space $(p \in[1, \infty])$ and $C_{c}(X)$ is the space of continuous functions from X to \mathbb{R} having compact support. Moreover, m is Lebesgue measure, \mathcal{L} is the σ-algebra of Lebesgue-measurable sets, and $\mathcal{B}(X)$ is the Borel σ-algebra of subsets of X.

1. (a) (True or false) Prove or provide a counterexample:

If U is a subset of \mathbb{R} which is open and dense, then $m(U)=+\infty$.
(b) Prove that for every Lebesgue measurable set $E \subset \mathbb{R}$ there is a Borel set F such that the symmetric difference $(E \backslash F) \cup(F \backslash E)$ has Lebesgue measure zero.
2. Let $d>1$ and let $z \in \mathbb{R}^{d}$ with $z \neq 0$. For any $u \in C_{c}\left(\mathbb{R}^{d}\right)$, define

$$
\left(A_{z} u\right)(x)=\int_{[0,1]} u(x+t z) d m(t), \quad x \in \mathbb{R}^{d}
$$

Prove that the restriction of A_{z} from $C_{c}\left(\mathbb{R}^{d}\right)$ to $C_{c}\left(\mathbb{R}^{d}\right) \cap L_{p}\left(\mathbb{R}^{d}\right)$ has a unique continuous extension

$$
\hat{A}_{z}: L_{p}\left(\mathbb{R}^{d}\right) \rightarrow L_{p}\left(\mathbb{R}^{d}\right)
$$

(Remark: The formula above does not define a function $A_{z} u: \mathbb{R}^{d} \rightarrow \mathbb{R}$ for all Lebesgue integrable $u: \mathbb{R}^{d} \rightarrow \mathbb{R}$.)
3. A function $f: \mathbb{R} \rightarrow \mathbb{R}$ is nonexpansive if $|f(x)-f(y)| \leq|x-y|$ for all $x, y \in \mathbb{R}$. Prove that f is nonexpansive if and only if f is absolutely continuous and $\left|f^{\prime}(x)\right| \leq 1$ a.e.
4. Let μ and ν be finite Radon measures on $X=\mathbb{R}^{d}$.
(a) Assuming ν is not absolutely continuous with respect to μ, show that there exists a sequence of continuous functions $\phi_{n}: X \rightarrow[0,1]$ having compact support, such that

$$
\int \phi_{n} d \mu / \int \phi_{n} d \nu \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

(b) Define

$$
K(\mu, \nu)=\sup \left\{\int f d \mu+\int g d \nu: f, g \in C_{c}(X) \text { and } f(x)+\frac{1}{2} g(x)^{2} \leq 0 \forall x\right\}
$$

Prove that if $K(\mu, \nu)<+\infty$ then $\nu \ll \mu$. (Hint: use $f=a_{n} \phi_{n}, g=b_{n} \phi_{n}$.)
(Remark: using the result of this problem one can show $K(\mu, \nu)=\int_{\mathbb{R}^{d}} \frac{1}{2}|u|^{2} d \mu, u=\frac{d \nu}{d \mu}$.)

