Basic Examination: MEASURE AND INTEGRATION January 16, 2024

• This test is closed book: no notes, Internet sources, or other aids are permitted.

• You have 3 hours. The exam has a total of 4 questions and 76 points.

• You may use without proof standard results from the syllabus which are independent of the question asked. You must, however, clearly state the result you are using.

1.

(i) [6 points] State Lebesgue Monotone Convergence Theorem.

(ii) [10 points] State and prove Fatou's Lemma.

2. [12 points] Let $f \in L^p_{\text{loc}}(\mathbb{R}^N)$, and let $1 \leq p < \infty$. Prove that for \mathcal{L}^N a.e. $x \in \mathbb{R}^N$,

$$\lim_{r \to 0} \frac{1}{\mathcal{L}^N(B(x,r))} \int_{B(x,r)} |f(y) - f(x)|^p \, dy = 0,$$

where \mathcal{L}^N stands for the Lebesgue measure on \mathbb{R}^N .

3. [24 points] Let (X, \mathcal{M}) be a measurable space, let μ be a σ -finite nonnegative measure on (X, \mathcal{M}) , and let λ be a real-valued measure on (X, \mathcal{M}) . Recall that the total (nonnegative) variation measure $|\lambda|$ is defined by

$$|\lambda|(E) := \sup \{ |\lambda(E_1)| + \dots |\lambda(E_n)| : n \in \mathbb{N}, \\ E_i, i = 1 \dots n, \text{ are disjoint sets in } \mathcal{M}, \bigcup_{i=1}^n E_i \subset E \}.$$

Prove that the following are equivalent:

- (i) $\lambda \ll \mu$.
- (iii) For every $\varepsilon > 0$ there exists $\delta > 0$ such that if $E \in \mathcal{M}$ is such that $\mu(E) < \delta$ then $|\lambda|(E) < \varepsilon$.

4. Let (X, \mathcal{M}, μ) be a measure space. μ is said to have the *finite subset* property if for every $E \in \mathcal{M}$ with $\mu(E) > 0$ there exists $F \subseteq E$ such that $0 < \mu(F) < \infty$.

 (i) [12 points] Prove that μ satisfies the finite subset property if and only if for every E ∈ M with μ(E) > 0

$$\mu(E) = \sup\{\mu(F) : F \in \mathcal{M}, F \subseteq E, 0 < \mu(F) < \infty\}.$$

(ii) [12 points] Let (X, \mathcal{M}, μ) and (Y, \mathcal{N}, ν) be measure spaces with μ and ν non zero. Prove that if $\mu \times \nu$ satisfies the finite subset property, then μ and ν also satisfy the finite subset property.