Basic examination: probability
January 26th, 2024

## The exam is 180 minutes long

Problem 1 (10pts). Give definitions of

- Sigma field
- Convergence of a sequence of random variables $\left(X_{n}\right)_{n=1}^{\infty}$ to a random variable $X$ in probability
- Discrete time martingale
- $\pi$ - and $\lambda$-systems
- Mutual independence of events

Problem 2 (10pts). State the following:

- The monotone convergence theorem
- Markov/Chebyshev inequality
- Jensen's inequality
- The Strong Law of Large Numbers for a sequence of i.i.d random variables
- The Fubini-Tonelli theorem

Problem 3 (20pts).

- Let $X_{0}, X_{1}, \ldots, X_{n}$ be a martingale with $X_{0}=0$ such that the martingale differences $X_{m}-X_{m-1}, 1 \leq m \leq n$, are bounded random variables. Use the definition of martingale to prove that the variance of $X_{n}$ equals the sum of the variances of the martingale differences.
- Assume that $Y_{i}, i \geq 1$, are symmetric sign variables, that is, $\mathbb{P}\left\{Y_{i}=1\right\}=\mathbb{P}\left\{Y_{i}=\right.$ $-1\}=1 / 2$ for all $i$. Assume further that the sequence of partial sums $\sum_{i=1}^{n} Y_{i}, n \geq 0$, is a martingale. Use the definition of martingale to prove that $Y_{i}, i \geq 1$, are mutually independent.
- Let $b_{1}, b_{2}, \ldots, b_{n}$ be mutually independent Bernoulli $(1 / 2)$ variables, and let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a 1-Lipschitz function, that is, $|f(x)-f(y)| \leq\|x-y\|_{2}$ for all $x, y \in \mathbb{R}^{n}$. Define the sequence

$$
\begin{aligned}
X_{0} & :=\mathbb{E} f\left(b_{1}, \ldots, b_{n}\right), \\
X_{i} & :=2^{-n+i} \sum_{s_{1}, \ldots, s_{n-i} \in\{0,1\}} f\left(s_{1}, \ldots, s_{n-i}, b_{n-i+1}, \ldots, b_{n}\right), \quad 1 \leq i \leq n .
\end{aligned}
$$

Prove that this is a martingale and that the martingale differences $X_{i}-X_{i-1}, 1 \leq i \leq n$, are bounded by 1 almost surely.

Problem 4 (15pts). State the Lévy continuity theorem for characteristic functions. Apply the result to derive the Central Limit Theorem for i.i.d random variables.

Problem 5 (15pts). Let $X$ be a non-negative random variable with $\mathbb{E} X<\infty$. Prove that there exists a convex function $\phi:[0, \infty) \rightarrow[0, \infty)$ with $\lim _{t \rightarrow \infty} \frac{\phi(t)}{t}=\infty$, such that $\mathbb{E} \phi(X)<\infty$.

Problem 6 (10pts). For each $n \geq 1$, let $b_{n 1}, b_{n 2}, \ldots, b_{n n}$ be i.i.d Bernoulli( $p_{n}$ ) variables, where the sequence of positive numbers $p_{n}, n \geq 1$, satisfies $\lim _{n \rightarrow \infty}\left(n p_{n}\right)=\lambda>0$. Prove that the sequence of variables

$$
\sum_{i=1}^{n} b_{n i}, \quad n \geq 1
$$

converges weakly to the Poisson distribution with parameter $\lambda$.
Problem 7 (10pts). Let $L>1$ be a fixed integer. Let $b_{1}, b_{2}, \ldots$ be a sequence of mutually independent Bernoulli(1/2) variables. Define a sequence of discrete random variables $X_{0}, X_{1}, \ldots$ taking values in $\{0,1, \ldots, L-1\}$ as

$$
X_{n}:=\left(\sum_{i=1}^{n} b_{i}\right) \quad \bmod L
$$

Prove that $X_{n}, n \geq 1$, converge weakly to the uniform distribution on the set $\{0,1, \ldots, L-1\}$.
Problem 8 (10pts). Let $X_{1}, X_{2}, \ldots$ be a sequence of i.i.d random variables of zero mean and unit variance. Assume that the sequence

$$
\sum_{k=1}^{n} \frac{1}{2^{k / 2}} X_{k}, \quad n \geq 1
$$

converges weakly to the standard normal variable. Prove that $X_{i}$ 's are standard normal variables.

