Basic examination: probability

January 26th, 2024

The exam is 180 minutes long

Problem 1 (10pts). Give definitions of

- Sigma field
- Convergence of a sequence of random variables $(X_n)_{n=1}^{\infty}$ to a random variable X in probability
- Discrete time martingale
- π and λ -systems
- Mutual independence of events

Problem 2 (10pts). State the following:

- The monotone convergence theorem
- Markov/Chebyshev inequality
- Jensen's inequality
- The Strong Law of Large Numbers for a sequence of i.i.d random variables
- The Fubini-Tonelli theorem

Problem 3 (20pts).

- Let X_0, X_1, \ldots, X_n be a martingale with $X_0 = 0$ such that the martingale differences $X_m X_{m-1}, 1 \le m \le n$, are bounded random variables. Use the definition of martingale to prove that the variance of X_n equals the sum of the variances of the martingale differences.
- Assume that Y_i , $i \ge 1$, are symmetric sign variables, that is, $\mathbb{P}\{Y_i = 1\} = \mathbb{P}\{Y_i = -1\} = 1/2$ for all *i*. Assume further that the sequence of partial sums $\sum_{i=1}^{n} Y_i$, $n \ge 0$, is a martingale. Use the definition of martingale to prove that Y_i , $i \ge 1$, are mutually independent.
- Let b_1, b_2, \ldots, b_n be mutually independent Bernoulli(1/2) variables, and let $f : \mathbb{R}^n \to \mathbb{R}$ be a 1-Lipschitz function, that is, $|f(x) - f(y)| \le ||x - y||_2$ for all $x, y \in \mathbb{R}^n$. Define the sequence

$$X_0 := \mathbb{E} f(b_1, \dots, b_n),$$

$$X_i := 2^{-n+i} \sum_{s_1, \dots, s_{n-i} \in \{0, 1\}} f(s_1, \dots, s_{n-i}, b_{n-i+1}, \dots, b_n), \quad 1 \le i \le n.$$

Prove that this is a martingale and that the martingale differences $X_i - X_{i-1}$, $1 \le i \le n$, are bounded by 1 almost surely.

Problem 4 (15pts). State the Lévy continuity theorem for characteristic functions. Apply the result to derive the Central Limit Theorem for *i.i.d* random variables.

Problem 5 (15pts). Let X be a non-negative random variable with $\mathbb{E} X < \infty$. Prove that there exists a convex function $\phi : [0, \infty) \to [0, \infty)$ with $\lim_{t \to \infty} \frac{\phi(t)}{t} = \infty$, such that $\mathbb{E} \phi(X) < \infty$.

Problem 6 (10pts). For each $n \ge 1$, let $b_{n1}, b_{n2}, \ldots, b_{nn}$ be i.i.d $Bernoulli(p_n)$ variables, where the sequence of positive numbers p_n , $n \ge 1$, satisfies $\lim_{n \to \infty} (np_n) = \lambda > 0$. Prove that the sequence of variables

$$\sum_{i=1}^{n} b_{ni}, \quad n \ge 1,$$

converges weakly to the Poisson distribution with parameter λ .

Problem 7 (10pts). Let L > 1 be a fixed integer. Let b_1, b_2, \ldots be a sequence of mutually independent Bernoulli(1/2) variables. Define a sequence of discrete random variables X_0, X_1, \ldots taking values in $\{0, 1, \ldots, L-1\}$ as

$$X_n := \left(\sum_{i=1}^n b_i\right) \mod L.$$

Prove that X_n , $n \ge 1$, converge weakly to the uniform distribution on the set $\{0, 1, \ldots, L-1\}$.

Problem 8 (10pts). Let X_1, X_2, \ldots be a sequence of *i.i.d* random variables of zero mean and unit variance. Assume that the sequence

$$\sum_{k=1}^{n} \frac{1}{2^{k/2}} X_k, \quad n \ge 1,$$

converges weakly to the standard normal variable. Prove that X_i 's are standard normal variables.