

Nanostructured molecular switch and memory

Hyoyoung Lee

US-Korea NanoForum, 27-30Apr2009

The center of Smart molecular memory @ Dept. of Chem. , SKKU

Why working on molecular memory?

Tera-bit Molecular Memory Device

Current Commercial Memory

- Digital-Camera, mp3, Cellular phone, Hand-held PDA, Notebook

ME, High Density

2009. 02. 04, **500***G*, \$170

Possible applications of the molecular memory

- Highly density memory
- Cheap (Low-end product)
- Various and flexible

Technology Performance Evaluation for Molecular Monolayer Memor

2007 년 ITRS Roadmap

Operational reliability!

What is the major issue for improving a reliability?

That is directly related to.....device yield!

Summary of results for the fabricated devices. (Note: working and non-working devices were defined by statistical analysis with Gaussian fitting on histograms)

	# of fabricated	Fab				Working				Device
	devices	failure	Short	Open	Non-working	DC8	C8	C12	C16	yield
Monothiol	13 440 (100%)	392 (2.9%)	11 744 (87.4%)	1103 (8.2%)	45 (0.3%)		63 (1.41%)	33 (0.69%)	60 (1.44%)	156 (1.2%)
Dithiol	4800 (100%)	192 (4%)	4080 (85%)	428 (8.9%)	16 (0.3%)	84 (1.75%)				84 (1.75%)

Tae-Wook Kim, Gunuk Wang, Hyoyoung Lee, and Takhee Lee*, Nanotechnology 18 (2007) 315204

Metal electrode

SAMs, thin films of molecules

Metal electrode

1. Stability of SAMs, thin films of organic molecules

- Compactness, robustness, and <u>film thickness of the SAMs</u>
- Stability of SAMs having functional groups vs only alkane (di)thiol

2. Bottom/top Electrodes (metal)

- <u>Surface roughness of bottom metal electrode (btm)</u>
- Penetration of metal particles into the SAMs (top)
- Surface area contacted on metal electrode

Surface roughness , RMS of bottom electrode: ~1.4 nm

The length of SAM molecules, film thickness of SAMs: ~2 nm

What is your suggestion to improve our device yield? What do you say about film thickness?

Self-Assembled Monolayer of RB

Surface : Au(800 Å)/Ti(50 Å)/Si

Thickness of RB-(CH2)₂SH, AUT-AUT and RB-AUT-AUT using Ellipsometer

I-V curves by using CP-AFM

- 1. $RB-(CH_2)_2SH$ film show ohmic behavior
- 2. AUT-AUT film show insulating behavior
- 3. *RB* monolayer on the bilayered AUT exhibit hysteresis.

G. S. Bang, ...H. Lee*, Langmuir (IF. 4.0) 23, 5195-5199 (2007)

What do you say about...in device?

- Preventing the penetration of Au NPs

- Increasing the film thickness

- Introducing H boning

to overcome the RMS of Au btn

Current density-voltage (J-V) characteristics of semi-log scale

Current density-voltage (J-V) characteristics; Normalized I-V curves between – 0.5 V and + 0.5 V (the inset) for the TUA-AUT device (black line) and the RB-TUA-AUT device (red line) in the nano via-hole with 170 nm diameter.

Device yields depending on the length of molecules

	DDT SAM	RB-DDT SAM	TUA-AUT Bilayer SAM	RB-TUA-AUT Bilayer SAM
Nano via h	0%	0%	> 11%	94%
ole	=	=	18 out of 160	102 out of 108

High Reproducibility

Molecular switch/memory

What are other possible molecules for molecular switch/memory device?

Synthesis of Ru(tpy)₂ Derivatives

Electron Donor (metal)-Acceptor (Ligand, tpy)

Scheme of Ru^{II} complexes incorporated in an ordered *n*-alkanethiol SAI on Au(111)

A voltage-driven molecular switch

I-V characteristics of a Au-NP/Ru^{II}(tpyS)₂ incorporated 1- octanethiol (OT) SAM on Au(111), Dithiol

STM image at a constant tunneling current of 20 pA with a tip bias of 1.2 V $\,$

Histograms of threshold voltage for current switch-on in the single Au-NP/Ru^{II}(tpyS)₂ junctions

Cyclic voltammogram for a 3 mM RuII(tpy)(tpy $C_{13}SAc$) solution in acetonitrile using a glassy carbon electrode.

The redox formal potentials can be converted to the vacuum levels; Hipps et al. $[4.7 \text{ eV} + (1.7)E_{ox}(SCE)_{1/2}]$ and Armstrong et al $[4.7 \text{ eV} + E_{red}(SCE)_{1/2}]$

1. Energy levels of the first metal-centered oxidation, 6.74 (V_{ox} = 4.7 eV + (1.7) x 1.2 = 6.74 eV) 2. Energy levels of the first ligand-centered reduction are 3.4 V (V_{red} = 4.7 eV - 1.2 = 3.4 eV) below the vacuum.

Typical *I-V* characteristics through molecular junctions of $Ru^{II}(tpy)(tpyC_7S)$ showed significant conductance switching to a high conductance state approximately at 1.7 V.

The threshold voltage of switch-on is comparable to the first redox formal potential of the terpyridine ligand supported on gold.

```
Seo, ... H. Lee*, J. Am. Chem. Soc. (IF 7.9), 130(8), 2553-2559, 2008
1<sup>st</sup> understanding of the charging Process of the molecules at the solid state
```

lectron Tunneling through an Alkyl Chain-Tethered Metal Complex Molecular Switch Junction

Seo, ... H. Lee*, Chem. of Mater., submitted, 2009

olecular Electron Transport on Structural Phase Transition in a Large Area Junction

K. Seo, H. Lee*, ACS Nano., accepted, 2009

Fabrication of Molecular Monolayer Non-Volatile Memory (MMMVM)

Schematic diagram of the In₂O₃ nanowire FET device

SEM image of an In_2O_3 nanowire FET

1. M. Jung ...H Lee* and J. Kim*, Quantum interference in radial heterostructure nanowires, Nano Letters, 8, 3189, 2008

2. M Jung, **H Lee***..., Short-channel effect and single-electron transport in individual indium oxide Nanowires, *Nanotechnology*, 18, 435403, **2007**.

Electron Transport through Individual Indium Oxide Nanowire

 T_{DS} - V_G characteristics of the In_2O_3 nanowire FET device

 $I_{\rm DS}$ - V_G characteristics of the ${\rm In_2O_3}$ nanowire FET device modified with Ru SAM

Reversible switching operations in the write, read, erase and read voltage cycles; writing, reading and erasing voltages (V_G pulses for 1 s) are -15 V, -6 V and 15 V, respectively.

 $I_{\rm DS}$ versus retention time for the In_2O_3 nanowire FET in an ON current state (red line) and an OFF current state (black line).

I, Choi, ...**H Lee***, Charge Storage Effect on In₂O₃ Nanowires with Ruthenium Complex Molecules, Applied physics express, 2, 015001, 2009

Electrode patterning w/soft Lithography

Nano-Imprint Lithography: Stamp Design

Unit cell size : 1180X1180um² Main pattern : line width/line space 40/75, 50/75

Nano-Imprint Lithography: Stamp

Nano-Imprint Lithography: Stamp Design II

Fabrication Process for Bottom Layer

7. Lift off

Pictures in Etching Process

1. After Imprinting

Acc.V Spot Magn Det WD Exp 10.0 kV 3.0 48797x SE 26.0 2

2. After RIE

After Lift-Off

TR

ositive

500 nm

ETRI

Det WD Exp TLD 4.4 2

ETRI

Fabrication Process for Top Layer

Research Initiatives

Selective nano-patterning using Layer-by-Layer

Selective Patterning of LBL Nanolines

SEM Analysis

Will be submitted soon

Thank you very much for your attention