#### **Beyond Transistor Scaling:** New Devices for Ultra-Low-Energy Information Processing

#### Prof. Tsu-Jae King Liu

Department of Electrical Engineering and Computer Sciences University of California, Berkeley, CA 94720

April 28, 2009



6<sup>th</sup> US-Korea Nano Forum (Las Vegas, NV, USA)

#### **The CMOS Power Crisis**



# **The CMOS Power Crisis**

- Due to off-state leakage,  $V_{TH}$  cannot be scaled down aggressively. Thus, the supply voltage ( $V_{DD}$ ) has not been scaled down in proportion to the MOSFET channel length.
- $\rightarrow$  CMOS power density has increased with transistor scaling!



3

#### Parallelism



 Parallelism is the main technique to improve system performance under a power budget.

# **Minimizing Operation Energy**



•  $E_{dynamic} + E_{leakage} = \alpha L_d C V_{dd}^2 + L_d I_{OFF} V_{dd} t_{delay}$ •  $t_{delay} = L_d C V_{dd} / (2I_{ON})$ 

→ CMOS has a fundamental lower limit in energy per operation, due to subthreshold leakage.

#### The Need for a New Switch



 When each core operates at the minimum energy, increasing performance requires more power.

#### **New Switching Devices**



# **MOSFET Subthreshold Swing**



- In the subthreshold region ( $V_{GS} < V_{TH}$ ),  $I_D \propto \exp\left(\frac{qV_{GS}}{nkT}\right)$  $\rightarrow$  S  $\geq$  60mV/dec at room temperature
- S must be reduced in order to achieve the desired  $I_{ON}/I_{OFF}$  with smaller  $V_{DD}$

# **Tunnel FET (TFET)**



### **Energy-Performance Comparison**

H. Kam et al. (UCB, Stanford U.), 2008 IEDM



 Si TFETs appear promising for sub-1GHz applications

30-stage 65nm CMOS inverter chain (transition probability=0.01, capacitance per stage=2.4fF)

# **TFET Technology Challenges**

- Increased I<sub>ON</sub> to expand range of applications
  - Advanced semiconductor materials to achieve smaller effective  $\mathrm{E}_{\mathrm{g}}$
- V<sub>TH</sub> control
- TFET-based integrated-circuit design

# **MOSFET-Inspired Relay**

F. Chen et al. (MIT, UCB, UCLA), 2008 ICCAD





- The mechanical *gate* is electrostatically actuated by a voltage applied between the gate and *body* electrode, to bring the channel into contact with the *source* and *drain* electrodes.
- Ideal switching behavior:
  - Zero off-state leakage
  - Abrupt turn-on

 $\rightarrow$  low  $V_{\text{TH}}$  (and  $V_{\text{DD}}$ ) possible!



Gate Gate

Channe

2µm

Drain

Body

Source

#### **Relay Scaling**

F. Chen et al. (MIT, UCB, UCLA), 2008 ICCAD

Scaling has similar benefits for relays as for MOSFETs.



- Measured pull-in voltages scale linearly
  {*W*,*L*,t<sub>gap</sub>} = {90nm,2.3um,10nm} → *V*<sub>pi</sub> = 200mV
- Mechanical delay also scales linearly (~10ns @ 90nm)

### **Relay-Based Circuit Design**

F. Chen et al. (MIT, UCB, UCLA), 2008 ICCAD

- Relays have small RC delay but large mechanical delay
  - → Complete all logic in a single complex (pass transistor) gate



# **Relay Technology Challenges**

- Surface adhesion force
- Mechanical contact resistance
- Reliability





#### Summary



# Summary

- Due to subthreshold leakage, CMOS technology has a fundamental limit in energy efficiency.
- New switching devices with steeper switching behavior are needed to achieve lower energy per operation.
  - <u>Examples</u>: tunnel FET, relay
  - <u>Note</u>: Such devices may have very different characteristics than the MOSFET. Thus, they will require new circuit and system architectures to fully realize their potential energyefficiency (and hence performance) benefits.

# Acknowledgements

- Collaborators:
  - Faculty: Elad Alon (UCB), Dejan Markovic (UCLA), Vladimir Stojanovic (MIT)
  - Students: Hei Kam, Fred Chen (MIT)
- Research funding:
  - » DARPA STEEP Program
  - » DARPA/MARCO Focus Center Research Program:
    - Center for Circuits and Systems Solutions (C2S2)
    - Center for Materials, Structures, and Devices (MSD)
- UC Berkeley Microfabrication Laboratory