Production of Hydrogen Using Titania Based Photocatalysts

Wonyong Choi

School of Environmental Science and Engineering Dept. of Chemical Engineering Pohang University of Science and Technology (POSTECH) Pohang, KOREA

Solar Energy Based Hydrogen Economy

Solar Energy

Solar Energy 1.2 x 10⁵ TW

(10,000 x Current world demands)

- Abundant
- Environment-friendly energy source
- Safe and Clean

~ 0.1% of the Earth's surface
(5 times as big as South Korea)
+
~ 10% conversion efficiency

Photocatalysis as a mean of solar energy conversion

Water Splitting on a Photocatalyst Particle

Band Gap Positions in Various Semiconductors

Common Strategies for Developing Visible Light Photocatalysts

- 1. Impurity Doping in Wide Band-gap Oxide Semiconductors
 - transition metal ions (cations)
 - nitrogen, carbon (anions)

2. Sensitization of Wide Band-gap Oxide Semiconductors

- organometallic complexes (e.g., ruthenium bipyridyl derivatives)
- organic dyes
- inorganic quantum dots (e.g., CdS)

3. Nanohybrid Systems

(metal oxides & chalcogenides, metal nanoparticles, organic & inorganic sensitizers, polymers, etc.)

Dye-Sensitized TiO₂ Solar Cell

Schematics of DSSC Performance of DSSC R J_{sc}: short circuit current V_{oc}: open circuit voltage e ff : fill factor Dye* $\mathbf{E}_{\mathbf{CB}}$ (-) ff =Energy (eV) P_{max} Pt Dye^{+/0} $\mathbf{E}_{g}(\mathrm{TiO}_{2})$ Current $\approx 3.2 \text{ eV}$ $J_{sc} = 18 \text{mA/cm}^2$ J_{sc} $V_{oc} = 0.74V$ $I_3^- + 2e^- \leftrightarrow 3I^ \mathbf{E}_{\mathbf{VB}}$ (+) ff = 73% 0 Semiconductor **Solution** V_{oc} 0 Voltage

H₂ Production on Dye-Sensitized TiO₂

Hydrogen Production with Dye-Sensitized TiO₂

Controlling/Modifying Interfacial Properties :

- Sensitizer anchoring mode
- Ion-exchange resin coating
- Barrier layer coating
- Hybridization with carbon nanotubes
- Non-Ruthenium Dye sensitized systems

Anchoring Group

Different ways of anchoring molecules on surfaces

(Bpy)₂(4,4'-bis(phosphonato)-2,2'-bipyridyl) Ruthenium(II)

Bae et al., J. Phys. Chem. B 2004, 108, 14903

Anchoring Groups in Ru-Sensitizers

Carboxyl

C2

C4

C6

P2

P4

P6

Anchoring Group Effect: pH-dependent Hydrogen Production on Ru^{II}/Pt-TiO₂ under Visible-light Illumination

(Bae and Choi, J. Phys. Chem. B 2006, 110, 14792)

TiO₂ Surface Modification with Nafion

Nafion-Coated TiO₂ Particle

(H. Park and W. Choi, *J. Phys. Chem. B* **2005**, *109*, 11667)

Ru(dcbpy)₃-TiO₂ vs. Ru(bpy)₃²⁺/Nafion/TiO₂

Ru^{*II*}(*bpy*)₃²⁺

OH

Photo-sensitized H₂ Production in two anchoring systems

(H. Park and W. Choi, *Langmuir* 2006, 22, 2906)

Photoelectrochemical Hydrogen Production

Carbon Nanotube Assisted Generation of Hydrogen in Dye-Sensitized Photoelectrochemical Cell under Visible Light

Photoelectrochemical Hydrogen Production

E1: TiO₂/Nf/RuL₃ with CNT E2: without CNT

Dye-Sensitized TiO₂ with Thin Overcoat of Al₂O₃

Organic Dye

Organic Dye vs. Ru-complex Dye

Dye	λ _{max} (nm)	^ɛ _{max} (M⁻¹ cm⁻¹)	∆E (V)	E⁰(dye/dye⋅+) (V _{NHE})	E⁰(dye⁺/dye⋅+) (V _{NHE})
OD	445	24500	2.45	1.35	-1.0
RuL ₃ c	465	19500	2.20	1.39	-0.81

Metal-free organic dye sensitizers Low-cost production High visible light absorption Facile molecular design

H₂ Production using a Dye Sensitized TiO₂ System

Hydrophilicity of Organic Dyes

 $[Dye/Pt/TiO_2] = 10 \ \mu mol/g$, $[EDTA] = 10 \ mM$, [Cat] = 1g/L, $pH_0=3$, $\lambda > 420 nm$

Fullerol/TiO₂ Charge Transfer Mediated Visible **Light Photocatalysis** Fullerol (C₆₀(OH)_x) $C_{60}(OH)_x / TiO_2$ TiO₂ C₆₀ **Surface-Complex Formation** Water Soluble ! Ligand(C_{60}) to Metal (Ti) charge transfer - Polyhydroxylate water-soluble form of the fullerene (LMCT) C₆₀ -C₆₀(OH)_x(ONa)_y (x+y=24) y generally around 10-15 Visible light activity

Theoretical Calculation of Fullerol/TiO₂ Complex

<Fullerol + TiO₂> <Fullerol/TiO₂>

•These absorption spectra are calculated using intermediate neglect of differential overlap (INDO) model parameterized for spectroscopy at the configuration interaction (CI) level of theory (ZINDO/S-CIS)

Conclusions

- Dye-sensitized TiO₂ nanoparticles can be modified in various ways for H₂ production.
- The hydrogen production on dye-sensitized TiO₂ is critically influenced by the kind of surface anchoring groups of the dye.
- Nafion-coated TiO₂ can anchor non-derivatized ruthenium bipyridyl complexes via ion exchange for efficient hydrogen production.
- The presence of alumina overcoat on TiO₂ enhanced the efficiency of dye-sensitization for hydrogen production.