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ABSTRACT

In this thesis, we study linear outer approximations of semidefinite programs (SDPs)
and extend these ideas to build algorithms that solve binary SDPs arising from quadrat-
ically constrained quadratic binary problems. We conclude by introducing a multi-
commodity vector clock problem and deriving a structural result for it.

Chapter 1 introduces our generic technique to obtain linear relaxations of semidefinite
programs with provable guarantees based on the commutativity of the constraint and
the objective matrices. We study conditions under which the optimal value of the SDP
and the proposed linear relaxation match, which we then relax to provide a flexible
methodology to derive strong linear relaxations.

Chapter 2 introduces a spectral second-order outer approximation algorithm to solve
to optimality integer semidefinite programs that are themselves exact formulations of
binary quadratically constrained quadratic problems. Our approach fundamentally
builds on the results of the previous chapter.

Chapter 3 considers rumor spreading problems in undirected graphs, generalizing the
minimum broadcast time problem to the multi-commodity case. We also consider its
extension to an infinite horizon version to minimize information latencies captured in
a vector clock model. We show that the multi-commodity version of these problems
on general graphs have locally periodic schedules that are within a poly-logarithmic
factor of optimal by studying the properties of a non convex relaxation.
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NOTATION

We denote the set of square, real, 𝑛×𝑛 symmetric matrices by S𝑛 and the set of positive
semidefinite matrices by S𝑛+. By convention, we assume that semidefinite matrices are
always symmetric. We denote the Löwner order of symmetric matrices by ⪰. Hence,
the notation 𝑋 ⪰ 𝑌 means 𝑋 −𝑌 ∈ S𝑛+. In particular, 𝑋 ⪰ 0 indicates that 𝑋 is positive
semidefinite (PSD). For an integer 𝑘 ∈ N, [𝑛] denotes the set of natural numbers
{1, . . . , 𝑘}. We denote the cardinality of a set 𝐼 by |𝐼 |. We denote by 𝑒1, . . . , 𝑒𝑛 the
standard basis of R𝑛 and the 𝑛 × 𝑛 identity matrix by 𝐼𝑛. For a symmetric matrix 𝑊

we let 𝜆1(𝑊) ≥ 𝜆2(𝑊) ≥ · · · ≥ 𝜆𝑛(W) be its eigenvalues. When the matrix is clear
from the context, we drop the terms in parentheses and simply write 𝜆1 ≥ · · · ≥ 𝜆𝑛.
For 𝐴 ∈ S𝑛 we write 𝑡𝑟 (𝐴) for the trace of 𝐴: 𝑡𝑟 (𝐴) =

∑𝑛
𝑖=1 𝐴𝑖𝑖 and write ∥𝐴∥𝐹 to

denote the Frobenius norm of 𝐴: ∥𝐴∥𝐹 =

√︃∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝐴

2
𝑖 𝑗

. The ℓ1 norm of 𝐴 is given
by ∥𝐴∥1 =

∑
𝑖, 𝑗 |𝐴𝑖 𝑗 |. We denote by ⟨·, ·⟩ the usual Frobenius inner product of two

matrices in S𝑛, recalling that for two matrices 𝐴, 𝐵 ∈ S𝑛, ⟨𝐴, 𝐵⟩ = 𝑡𝑟 (𝐴𝑇𝐵) = 𝑡𝑟 (𝐴𝐵).
We denote by ®1 the vector of all ones in R𝑛 and by 𝐽 the matrix of all ones. If 𝐴

is a matrix, we denote by 𝑑𝑖𝑎𝑔(𝐴) the vector given be the diagonal of 𝐴. If 𝑢 is a
vector, 𝑑𝑖𝑎𝑔(𝑢) denotes the matrix with 𝑢 on its diagonal. We denote by E(𝐴) an
arbitrary orthonormal basis consisting of eigenvectors of 𝐴. In particular, if 𝐴 ∈ S𝑛

and E(𝐴) = {𝑣1, . . . , 𝑣𝑛} then we have 𝐴 =
∑𝑛

𝑖=1 𝜆𝑖𝑣𝑖𝑣
⊤
𝑖

[78]. Finally, given a weighted
graph 𝐺 we denote respectively the value of the max cut of 𝐺, the adjacency matrix,
the number of edges and the laplacian matrix by 𝑚𝑐(𝐺),𝑊 (𝐺), 𝑚 and L(𝐺). If 𝐺 is
clear from the context, we drop the dependency on 𝐺 and simply write 𝑚𝑐,𝑊, 𝑚 and
L.
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INTRODUCTION

Is linear programming fundamentally weaker than semidefinite programming? Linear
programming consists of minimizing a linear function over the intersection of an affine
plane and the non-negative orthant. In contrast, semidefinite programming minimizes a
linear function over the cone of positive semidefinite matrices. Semidefinite programs
(SDPs) are able to model any linear program (LP), while also being able to capture many
convex non-linear problems, e.g., the minimization of the largest eigenvalue of a matrix.
Consequently, the family of LPs is strictly contained in the family of SDPs. However,
delving deeper into this comparison reveals additional nuances worthy of discussion.
Since any convex set can be expressed as the intersection of a set of hyperplanes, it
follows, nominally, that any convex optimization problem can be approximated with a
linear program if a description of the hyperplanes is known. This is precisely the case
of semidefinite-representable convex regions, due to the fact that a matrix is positive
semidefinite if all of the quadratic forms it defines are non-negative.

After decades of research in this field, the broad conclusion is that in fact linear
programming is strictly weaker than semidefinite programming. For example, see
[26, 54]. A manifestation of this phenomenon appears in the field of approximation
algorithms in the setting of the maximum cut problem. Here one is given a graph and
must split the set of vertices into two disjoint sets in a way that maximizes the number
of edges crossing. This problem is NP-hard, and linear programs that approximate it
with a factor better than 2 require an exponential number of constraints [32, 33, 89,
152]. In sharp contrast, there is a polynomial time approximation algorithm based on
semidefinite programming achieving a ratio of ∼ 1.13 [64]. A second manifestation
appears in terms of the somewhat poor performance of LP-based outer approximation
algorithms to solve semidefinite programs as they are generally slow and progress
usually stalls [106]. All in all, it seems that the question of approximating semidefinite
representable convex regions with polyhedra has fallen out of favour.

In this thesis, we make the case that there is a fruitful setting in which it is worthwhile
to revisit the question of approximating a semidefinite program with linear relaxations.
Our motivation stems from quadratically constrained binary quadratic problems, a
fundamental class of optimization problems. In part, their importance comes from the
fact that any continuous function can be approximated arbitrarily well (in a compact
set) by a polynomial of arbitrary degree which, in turn, can be expressed with a
quadratic expression by introducing additional variables and quadratic constraints [60].



2

Thus, binary quadratically constrained quadratic problems (BQCQPs) are roughly as
expressive as binary nonlinear problems [60]. In fact, they capture problems from
many different fields, such as combinatorial optimization and computer science [23,
48, 52, 100, 131], machine learning [57, 107, 127], chemical engineering, as seen in
[21] and the references therein, portfolio optimization [22, 43, 139] (although most
of these problems require reformulating an integer problem to a binary one), and all
binary linear and polynomial optimization problems. Examples of problems captured
by binary QCQPs are the maximum cut problem, k-cluster problems, the k-partition
problem, the binary regression problem, the quadratic assignment problem, the stable
set number, the quadratic knapsack problem, the chromatic number, and the quadratic
set cover problem. Solving BQCQPs to optimality is hard both in theory [130] and in
practice, even for moderately sized instances [60].

Very recently, exploiting results from positive semidefinite matrices with entries in
0,−1, 1, de Meĳer and Sotirov showed in [110] that BQCQPs can be reformulated
as binary semidefinite programs (BSDPs), opening a new avenue to solve arbitrary
problems of the former class. In [103], Lubin et al. propose an outer approximation
algorithm based on the ideas of Duran, Grossmann and Leyffer, to solve mixed integer,
conic optimization programs, and their ideas can thus be specialized to mixed integer
semidefinite optimization. The strength of the outer approximation algorithm depends
critically on the quality of a linear relaxation of the semidefinite feasible region of the
integer SDP, and hence advances in the study of linear approximations of SDPs directly
translates to improvements in the outer approximation algorithm. The key insight of
our work is that the power of approximation of LPs is weak especially when the feasible
region of the linear program does not depend on the objective function or the constraint
matrices of the semidefinite program. To the best of our knowledge, the quality of
relaxations explicitly depending on the objective function of the SDP has been seldom
studied. An explicit form of this question is whether there exists a linear program that
approximates the value of the maximum cut of any graph within a factor strictly better
than 2 if we allow the LP to depend on the graph at hand. Naturally, this question is
ill-posed as stated, and some considerations must be taken to limit the class of linear
programs considered. Chapter 1 is dedicated to these considerations and explores
conditions under which hardness of approximations results can be avoided. Chapter
2 explores the behaviour of outer approximation algorithms for integer semidefinite
programs when the ideas of Chapter 1 are taken into account.

The final chapter of this thesis is dedicated to a combinatorial optimization problem
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which we call the multi-commodity vector clock problem and concerns the minimiza-
tion of latencies in a graph where information is perpetually being created and shared.
Such problems find applications in network communications and databases. Our study
mainly involves finding structural properties of optimal solutions, in the hopes that such
structure can be exploited to derive polynomial time approximation algorithms for the
multi-commodity vector clock problem.
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C h a p t e r 1

INSTANCE-SPECIFIC LINEAR RELAXATIONS OF
SEMIDEFINITE OPTIMIZATION PROBLEMS

1.1 Introduction
The generic formulation for a semidefinite optimization problem (SDP) is

min
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

s.t: ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, ∀𝑖 ∈ [𝑟],
𝑋 ⪰ 0

(SDP)

where 𝐶 ∈ S𝑛 is a symmetric (without loss of generality) cost matrix and 𝑟 ∈ N.

Semidefinite optimization, i.e., the optimization of a linear function over the set of
positive semidefinite matrices intersected with an affine subspace [151]. It arises nat-
urally in combinatorial optimization [6, 64, 101, 121], control theory [3, 74, 129],
polynomial optimization [94, 128, 129], machine learning [41, 93] and others. These
optimization problems are solvable in polynomial time up to an arbitrary accuracy
via the theory of interior-point methods [120], which in addition are one of the most
successfully approaches used in practice to solve SDPs. It is well known that SDPs
are challenging to solve in practice. Typical off-the-shelf solvers use interior-point
methods, which require computation of large Hessian matrices (and their inverses) and
are often intractable due to memory limitations. For an illustration, see [16, chapter
6.7], [106], and [18] where it is mentioned that state-of-the-art solver such as MOSEK
[8] cannot solve semidefinite problems with a symmetric matrix 𝑋 on more than 250
rows. Inspired by these practical limitations, researchers have proposed several ideas
to solve large-scale semidefinite programs. Such techniques are, amongst others, 𝑖)
exploiting structure of the problem (such as sparsity and symmetry), 𝑖𝑖) producing low
rank solutions, 𝑖𝑖𝑖) algorithms based on augmented Lagrangians and the alternating
direction method of multipliers. See [105] for a survey of all of these methods.

A relevant family of algorithms to solve semidefinite programs consists in constructing
inner and outer polyhedral approximations of the semidefinite cone in order to find a
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sequence of improving feasible solutions together with tighter bounds on the objective
of the SDP, allowing one to trade off between scalability and conservatism.

Research on this class of algorithms is relevant due to its intimate connection with
a fundamental question in convex geometry: can the positive semidefinite cone be
approximated by polyhedra? Taking the perspective of the field of optimization, this
question can be framed by asking if linear programs are strong enough to approximate
semidefinite ones. These twin questions, relevant in the fields of optimization and
convex geometry respectively, have given rise to a thriving body of research [4, 18,
33, 54].

Outer approximations have been the focus of substantial effort since the hardness of
SDP comes from the semidefinite constraint and so one may drop it and and add linear
constraints on 𝑋 implied by 𝑋 ⪰ 0. In this case, (SDP) is relaxed to a linear program.
A typical example is to add the constraints 𝑋𝑖,𝑖 ≥ 0, ∀𝑖 ∈ [𝑛] and 𝑋𝑖𝑖 + 𝑋 𝑗 𝑗 ± 2𝑋𝑖, 𝑗 ≥
0, ∀𝑖 ∈ [𝑛], ∀ 𝑗 ∈ [𝑛] which are valid for any 𝑋 ⪰ 0. These relaxations tend to be weak
and seldom used in practice [26, 32]. A well studied example of this phenomenon is
the maximum cut problem and the theoretical hardness of approximating it with linear
programs which we will discuss in depth in Section 1.3.

The previous approach can be improved using ideas of Kelley [85]. The strategy is
to sequentially refine the linear relaxations by aggregation of cutting planes. More
concretely, consider the linear relaxation of SDP given by

min
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

s.t: ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, ∀𝑖 ∈ [𝑟],
𝑣⊤𝑋𝑣 ≥ 0 ∀ 𝑣 ∈ S

(𝐿S)

where S is a finite subset of R𝑛. Here, we simply insist that 𝑣⊤𝑋𝑣 ≥ 0 only for the
elements 𝑣 of the set S. If a solution to this program is not positive semidefinite, we
may update S iteratively. This results in the following algorithm:

The specific implementations of this algorithm mainly differ in how one updates the
set S. In [4, 5],the authors use the extreme rays of the set of diagonally dominant
matrices, which are then rotated by matrices obtained from a Cholesky decomposition
of an optimal solution to the dual of (𝐿S). They also propose an inner approximation
of the positive semidefinite cone based on the so-called 𝐷𝑆𝑂𝑆𝑛 and 𝑆𝐷𝑆𝑂𝑆𝑛,𝑑 cones.
In a different line of work [11, 44, 135, 144, 157] chose the elements 𝑣 of S favoring
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Algorithm 1
1: Fix a finite set S ⊆ R𝑛. Drop the semidefinite constraint 𝑋 ⪰ 0 of program 𝑆𝐷𝑃

and solve the resulting linear program 𝐿S finding a minimizer 𝑋∗.
2: while 𝑋∗ has a negative eigenvalue do
3: Find a eigenvector 𝑣 corresponding to the most negative eigenvalue of 𝑋∗. Add

𝑣 to S.
4: Solve the updated linear program to find a new minimizer 𝑋∗.
5: end while
6: return 𝑋∗.

sparsity, with the idea that the resulting linear programs will be easier to solve. Bundle
methods, such as the spectral bundle method of Helmberg and Rendl [72] work with
the dual of (SDP), under the further restriction that 𝑋 has a constant trace. [90] presents
a unifying framework for the latter and similar methods. In [18], the constraint 𝑋 ⪰ 0
is replaced for infinitely many constraints of the form 𝑓 (𝑋,𝑌 ) ≤ 0 which must hold
for every 𝑌 in some convex set Y and where 𝑓 is a Lipschitz continuous function.
The authors further argue that one should instead solve a second-order cone relaxation,
adding the constraints

(
2𝑋𝑖, 𝑗

𝑋𝑖,𝑖 − 𝑋 𝑗 , 𝑗

)
2

≤ 𝑋𝑖,𝑖 + 𝑋 𝑗 , 𝑗 , ∀𝑖 ∈ [𝑛], ∀ 𝑗 ∈ [𝑛],

which are valid for (SDP).

It is noteworthy that mostly all of these works discuss how to update S, but seldom
consider how to initialize it. Typically S is set to the standard basis of R𝑛, resulting
in the linear constraints 𝑋𝑖𝑖 ≥ 0, 𝑖 ∈ {1, . . . , 𝑛}, which are implied by the constraint
𝑋 ⪰ 0. Interestingly, under mild conditions, there exists a finite set S that ensures
that the optimal values of the SDP and the linear relaxation 𝐿S match, supporting the
approach of using Algorithm1.

Observation 1.1. Suppose that both (SDP) and its dual, given by the following semidef-
inite optimization program

max
𝑦∈R𝑟

𝑏⊤𝑦

s.t: 𝐶 −
𝑟∑︁
𝑖=1

𝑦𝑖𝐴𝑖 ⪰ 0
(DSDP)
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are strictly feasible. Let 𝑦∗ be an optimal solution to (DSDP). Let 𝑣1, . . . , 𝑣𝑛 be an
orthonormal basis of R𝑛 of eigenvectors of 𝐶 − ∑𝑚

𝑖=1 𝑦
∗
𝑖
𝐴𝑖 = 𝑆∗ with 𝑆∗ =

∑𝑛
𝑖=1 𝛽𝑖𝑣𝑣

⊤,
and 𝛽𝑖 the eigenvalues of 𝑆∗. Let S∗ = {𝑣1, . . . , 𝑣𝑛}. Then, 𝐿S∗ is solvable, and its
optimal value matches the optimal value of (SDP).

The proof of this observation is deferred to the section 1.2. Similar versions of
Observation 1.1 can be found in [90] and [146].

In fact, [146] proves that if S = {𝑢1, . . . , 𝑢𝑙} are the vectors generated by the spectral
bundle method of [72] of Rendl et al. to solve DSDP, the objective value of (𝐿S)
matches that of (𝑆𝐷𝑃), but this is hardly surprising: if we knew in advance the set of
vectors S∗ given by Observation 1.1, we could set S = S∗ and solve (SDP) as a linear
program. More importantly, we emphasize that finding the sets S∗ and {𝑢1, . . . , 𝑢𝑙}
requires solving another comparable SDP, namely DSDP.

In this chapter, we tackle the task of finding a better set S to initialize Algorithm 1
under certain computational restrictions by drawing inspiration from the question of
when - if ever- one can avoid the iterative procedure suggested by Kelley and exactly
solve the semidefinite program with a linear program. By “exactly solving" we mean
finding a linear relaxation of the SDP whose optimal value equals that of the SDP.

Technically, Observation 1.1 indicates that the question of exactly solving an SDP with
a linear problem is ill-posed if one does not restrict the set of algorithms one is allowed
to use to process the instance. We can consider at least three possible approaches
to amend this issue. First, restricting the access one has to the given instance. For
example, say we are not shown a full SDP instance, but one is allowed to sample a
small subset of the entries of the objective and constraints matrices. Second, to only
have access to algorithms with at most a certain computational complexity, say matrix
multiplication complexity. However, this would require fixing a concrete computational
model and proving lower bounds for the complexity of the algorithms to be used, which
are typically very hard to obtain. A third approach, which we take in this chapter, is
to fix an oracle O, that we can query at most a constant number of times. Concretely,
we will assume that we have at our disposal an oracle that can compute a eigenvector
decomposition of a symmetric matrix, and that can solve linear programs of polynomial
size. If the SDP can in fact be solved with such an oracle, we say it is solvable under
O.
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Hardness of approximation of the max cut problem
The question of finding a good set S to initialize Algorithm 1 amounts to finding a
linear approximations to a semidefinite programs together with a guarantee that the
approximation is good. This line of research is motivated by the question of whether
the maximum cut (max cut henceforth) problem can be approximated using a linear
program by a factor strictly better than 2. This problem consists in finding a bipartition
of the nodes of a given graph that maximizes the number of edges with one end in both
parts. The results of Poljak, Rendl, Goemans and Williamson [64, 132] show that max
cut can be approximated to within a factor of 1.13 by an SDP relaxation. Therefore,
a linear approximation of factor at most 1.769 to that SDP would result in a linear
approximation the the max cut problem with an approximation better than 2 1. Such a
result would be striking as the common belief is that max cut cannot be approximated
within a factor better than 2 with a linear program in the restricted case that the feasible
region of the program is independent of the graph and solely depends on the number
of vertices [26, 32, 33, 89, 152]. In Section 1.3, we explore in detail the hardness of
approximation results for max cut.

Drawing inspiration from the study of exact solvability of an SDP with an LP, we
make the case that we can obtain “good starting" linear approximations for semidefinite
programs if one is allowed to letS depend on the dual of the semidefinite program. The
heart of the argument is that the obstructions mentioned for max cut emerge specifically
when the polytopes being optimized are determined solely by the number of variables
(node pairs for max cut) in a given instance. Hence, we propose to let S depend on the
matrices𝐶 and 𝐴1, . . . , 𝐴𝑟 which determine the objective and the constraints of (𝑆𝐷𝑃),
and consequently on the feasible region of DSDP. Crucially, such formulations trivially
avoid the results in [26] and [89]. We call linear approximations with such dependence
“instance-specific". Notice that making some assumption on the algorithms that we
can use to interact with the instance is essential here. To illustrate this point, imagine
we wish to write a linear program to find the max cut value 𝑚𝑐(𝐺) of a graph 𝐺. To
do so, we can compute a max cut of the graph using brute force and then write an LP
with a linear constraint insisting that the objective equals 𝑚𝑐(𝐺).

Exact linear relaxations under O
To find candidate sets S that guarantee that the linear program 𝐿S is a strong relaxation
of SDP we first explore sufficient conditions under which the SDP is solvable under
the oracle O. Although Observation 1.1 suggests an answer, such a set of vectors

1 Since 1.77 · 1.13 = 2.
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cannot, as far as we are aware, be obtained with the oracles we are considering. In
Section 2, we present Theorems 1.1 and 1.2 which will provide solvability under O
without requiring the solution of a semidefinite program. Our results are tied to the
geometry of the dual feasible region of SDP, and a relevant case is when the dual
feasible region is a polyhedron. If such is the case and an explicit description of it is
available, then program DSDP can be solved as a linear program. Theorem 1.1 shows
that under the same condition the primal SDP can be solved with a linear program
as well. Unfortunately, this theorem is not very useful as it requires enumerating
the vertices of the feasible region, which may grow exponentially. The polyhedral
assumption has received attention from the literature in the context of quadratically
constrained quadratic problems (QCQPs) [155], and perhaps more so a weakening of
it: simultaneous diagonalizability.

Definition 1.1. A set of matrices {𝐴𝑖}𝑖∈𝐼 ⊆ R𝑛×𝑛 where 𝐼 is some set of indices which
may be infinite, is said to be simultaneously diagonalizable (SD) if there exists an
invertible, orthogonal matrix 𝑈 ∈ R𝑛 such that every element of the set {𝑈⊤𝐴𝑖𝑈}𝑖∈𝐼 is
a diagonal matrix. Note that 𝑈⊤𝑈 = 𝑈𝑈⊤ = 𝐼𝑛 as 𝑈 is orthogonal.

It turns out that if the set of matrices defining the dual feasible region Γ of SDP is
simultaneously diagonalizable, then Γ is a polyhedron [155].

Observation 1.2. Let Γ be a spectrahedron given by the representation Γ = {𝑦 ∈
R𝑛 : 𝐶 − ∑𝑟

𝑖 𝐴𝑖𝑦𝑖) ⪰ 0}. If the set of matrices {𝐶, {𝐴𝑖}𝑖∈[𝑟]} is simultaneously
diagonalizable, then Γ is polyhedral.

We prove this fact in Section 1.2, and point out that the given condition is sufficient
but not necessary. Under this more stringent condition, we prove in Theorem 1.2 that
O can be used to solve SDP.

It will typically not be the case that the dual feasible set Γ is polyhedral, and much
less that the matrices 𝐶, {𝐴𝑖}𝑖∈[𝑟] are simultaneously diagonalizable. In Section 1.2 we
prove that this condition is equivalent to the simultaneous diagonalizability of matrices
𝐶 − ∑

𝑖 𝐴𝑖𝑝𝑖 and 𝐶 − ∑
𝑖 𝐴𝑖𝑞𝑖 for all 𝑝 and 𝑞 in R𝑟 . This characterization suggests that

we only insist of the commutativity of the matrices 𝐶 − ∑
𝑖 𝐴𝑖𝑝𝑖 and 𝐶 − ∑

𝑖 𝐴𝑖𝑞𝑖 for
some 𝑝 and 𝑞. It turns out that this is the key idea to initialize the set S in Algorithm
1. In Section 1.2 we set the theoretical background of these considerations, and in
the following sections we explore their applications to three families of semidefinite
optimization problems: the max cut problem, The Lovász theta number and the more
generic Shor SDP relaxation of quadratically constrained quadratic problems.
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Overview and outline
In this chapter, we explore the question of when an SDP can be solved with a linear
program with the intention of improving existing cutting plane approaches to solve
SDPs (such as the conservative methods described in [105]). We point out that this
family of methods is not the de-facto choice to solve large scale semidefinite programs,
and very strong methods exist which can scale substantially such as [124, 156, 158,
160, 163]. Nevertheless, we hope these methods might come with their own limitations
and in settings where SDPs appear naturally, such as in the sum-of-squares hierarchy
for polynomial optimization [159], or whenever optimal solutions to the SDPs are not
low rank. In these regimes, polyhedral approximations might be a good alternative. In
addition, developing stronger polyhedral approximations to SDPs has consequences in
approaches to integer semidefinite programs, which has received attention recently [38,
61, 62, 76, 161] and in spatial branch-and-bound algorithms for non-convex quadratic
problems. We explore this later avenue in Chapter 2. The rest of this chapter is
organized as follows.

(a) In Section 1.2 we derive two sufficient conditions for solvability of an SDP under
O. These conditions are then weakened to produce a strategy to provide candidate
starting sets for outer polyhedral approximation algorithms to solve SDPs.

(b) In Section 1.3, we study the setting of finding a maximum cut of a graph 𝐺

using the semidefinite relaxation of Poljak, Rendel, Goemans and Williamson
[64, 132]. Even though the conditions for exact solvability are not met, we use
the relaxed version to provide a linear program that certifies a spectral bound in
contrast to previous linear relaxations for the maximum cut problem. We then
derive a solvability result under O, recovering and generalizing a theorem of
Alon and Sudakov [7].

(c) In Section 1.4 we introduce linear relaxations of the Lovász theta number SDP
and Shor’s semidefinite relaxation for quadratically constrained quadratic pro-
grams. We recall as well our linear relaxation of max cut, and introduce a linear
strengthening of the max cut SDP.

(d) In Section 1.5 we extensively test our methods empirically on random instances
of the problems introduced in Section 1.4. We discuss solving times of the
proposed programs.
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(e) In Section 1.6 we show the performance of our linear program in the case where
the original SDP is itself a relaxation of an underlying optimization problem.
We study the case of the max cut problem and the sparse PCA problem, where
both the SDPs and our linear relaxations can be used to recover a solution
to the underlying problem. We show that the quality of our linear programs
is competitive with that of the SDPs. For max cut, we compare with results
obtained by Mirka and Williamson in [114].

(f) In Section 1.7 we conclude with some remarks.

1.2 Instance-specific linear relaxations of semidefinite optimization problems
In this section we explore the question of exact solvability of semidefinite programs
given access to an oracle O, with the following properties:

• Given a set of simultaneously diagonalizable matrices {𝐴1, . . . , 𝐴𝑟}, O can be
called once to compute an orthogonal matrix 𝑈 such that 𝑈⊤𝐴𝑖𝑈 are diagonal
matrices for 𝑖 = 1, . . . 𝑟. For an implementation of such an oracle see [65].

• O can be called a constant number of times to find an optimal solution to a linear
program of polynomial size in the bit representation of the information of the
SDP, namely the objective and constraint matrices.

In case we can find the optimal value of program SDP by querying O at most a constant
number of times, we say that the SDP is solvable under O, and our intention is to derive
sufficient conditions that guarantee solvability of the SDP. It is to be expected that such
conditions are not applicable except in some rare cases. We posit that we can derive
weakenings of them to provide a starting set S for Algorithm 1. Recall that a generic
SDP is given by

min
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

s.t: ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, ∀𝑖 ∈ [𝑟],
𝑋 ⪰ 0.

(SDP)

The dual of this program is:
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max
𝑦∈R𝑛

𝑏⊤𝑦

s.t: 𝐶 −
𝑚∑︁
𝑖=1

𝑦𝑖𝐴𝑖 ⪰ 0.
(DSDP)

Throughout this chapter, we will assume ”generic SDPs" and their duals are strictly
feasible, and therefore strong duality holds. A spectrahedron Γ is the intersection of
the cone of positive semidefinite matrices and an affine subspace. If we identify the
affine subspace with R𝑟 then we can write Γ as:

Γ = {𝑦 ∈ R𝑟 : 𝑦1𝐴1 + · · · + 𝑦𝑟𝐴𝑟 + 𝐴𝑟+1 ⪰ 0}

where 𝐴1, . . . , 𝐴𝑟 , 𝐴𝑟+1 are symmetric 𝑛×𝑛matrices. In general, the mapA : R𝑟 → S𝑛

given by A(𝑦) = 𝑦1𝐴1 + · · · + 𝑦𝑟𝐴𝑟 + 𝐴𝑟+1 is called an affine symmetric matrix map.
Through duality, one can see that spectrahedrons are to semidefinite programs what
polyhedra are to linear programs [153].

As we have already pointed out, the necessity of restricting to an oracle with these prop-
erties comes from Observation 1.1, as otherwise we could always find an appropriate
polyhedron to optimize over. We now prove the content of the observation.

Proof. We first describe the dual of program 𝐿S for a generic set S = {𝑠1, . . . , 𝑠𝑘 }.
This program is given by:

max
𝑦∈R𝑛, 𝛼∈R𝑛+

𝑏⊤𝑦

s.t: 𝐶 −
𝑟∑︁
𝑖=1

𝑦𝑖𝐴𝑖 =

𝑘∑︁
𝑖=1

𝛼𝑖𝑠𝑖𝑠
⊤
𝑖 .

(𝐷𝐿S)

Notice that for any set S = {𝑠1, . . . , 𝑠𝑘 }, program (𝐷𝐿S) is a restriction of (𝐷𝑆𝐷𝑃) as
the matrices 𝐶 − ∑

𝑖 𝑦𝑖𝐴𝑖 are restricted to belong to the convex cone generated by the
PSD matrices 𝑠𝑖𝑠𝑇𝑖 , 𝑖 ∈ [𝑘], rather than the whole set of positive semidefinite matrices.
It follows that the optimal value of (DSDP) upper bounds the optimal value of (𝐷𝐿S)
for any set S. By hypothesis, both (SDP) and its dual are strictly feasible and therefore
solvable by strong conic duality. Hence, we let S∗ be the elements of a basis of R𝑛 of
orthonormal eigenvectors of an optimal solution 𝑆∗ of program DSDP. The dual of
𝐿S∗ is then max𝑦∈R𝑛 𝛼∈R𝑛+ 𝑏

⊤𝑦 subject to 𝐶 − ∑𝑚
𝑖=1 𝑦𝑖𝐴𝑖 =

∑𝑘
𝑖=1 𝛼𝑖𝑣𝑖𝑣

⊤
𝑖

. Hence, letting
𝑦𝑖 = 𝑦∗

𝑖
and 𝛼𝑖 = 𝛽𝑖 gives a feasible solution to 𝐷𝐿S∗ which matches the optimal value
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of 𝐷𝑆𝐷𝑃 and hence is optimal. To conclude, observe that strong linear duality holds
and therefore 𝐿S∗ is solvable and its optimal value equals that of 𝐷𝑆𝐷𝑃.

□

It is clear that whenever Γ is polytope and we have an explicit representation of it
given by a system of linear equations 𝐴𝑥 ≤ 𝑑, then program DSDP reduces to a linear
program. More interestingly perhaps is that the primal problem SDP can also be solved
as a linear program, albeit on potentially an exponential number of constraints.

Theorem 1.1. Consider a generic semidefinite optimization problem SDP, with dual
given by DSDP. Suppose that the set

Γ = 𝐶 −
𝑟∑︁
𝑖=1

𝑦𝑖𝐴𝑖 ⪰ 0

is a polytope with extreme points 𝑝1 . . . , 𝑝𝑘 , and define S :=
⋃𝑘

𝑖=1 E(𝐶 − A(𝑝𝑘 )).
Then, 𝐿S is a linear program and solves SDP.

Proof. The maximum value of the function 𝑏⊤𝑦 over Γ is achieved at some vertex
𝑝 of Γ. By strong duality and the solvability of DSDP, there exists some 𝑋∗ ⪰ 0
which solves program SDP. In particular, program 𝐿S with S :=

⋃𝑘
𝑖=1 E(𝐶 − A(𝑝𝑘 ))

where 𝑝1, . . . , 𝑝𝑘 are the vertices of Γ is feasible. Let �̂� be an optimal solution to this
program. Let {𝑣1 . . . 𝑣𝑛} ⊆ S be an orthonormal eigenbasis for the matrix 𝐶 − A(𝑝).
Since this matrix is positive semidefinite, we can write 𝐶 −A(𝑝) = ∑𝑛

𝑖=1 𝛽𝑖𝑣𝑖𝑣
⊤
𝑖

where
the 𝛽𝑖, 𝑖 ∈ [𝑛] are the (non-negative) eigenvalues of 𝐶 − A(𝑝). By feasibility of �̂� ,
𝑣⊤
𝑖
�̂�𝑣𝑖 ≥ 0 for all 𝑖 ∈ [𝑛]. Multiplying each term by 𝛽𝑖 ≥ 0 we derive

𝑛∑︁
𝑖=1

𝛽𝑖
〈
�̂�, 𝑣𝑖𝑣

𝑇
𝑖

〉
=

〈
�̂�,

𝑛∑︁
𝑖=1

𝛽𝑖𝑣𝑖𝑣
𝑇
𝑖

〉
=

〈
�̂�, 𝐶 − A(𝑝)

〉
≥ 0.

This implies that
〈
�̂�, 𝐶

〉
≥

〈
�̂�,A(𝑝)

〉
.

To conclude, recall that for 𝑗 ∈ [𝑟],
〈
𝑋, 𝐴 𝑗

〉
= 𝑏 𝑗 giving the inequality

〈
�̂�, 𝐶

〉
≥ 𝑏⊤𝑝.

Again by strong duality and since the LP is a relaxation of the SDP, we have 𝑏⊤𝑝 =

⟨𝐶, 𝑋∗⟩ ≥
〈
𝐶, �̂�

〉
yielding the desired equality 𝑏⊤𝑝 = ⟨𝐶, 𝑋∗⟩.

□
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In [136] is its shown that deciding if a spectrahedron is a polyhedron is in co-NP, and
an algorithm for deciding polyhedrality is given. [20] generalizes and improves the
previous results. The algorithm presented in the latter paper runs in exponential time,
as it requires enumerating the vertices of a certain polyhedron. Even if we knew that Γ
is polyhedral, we do not have exact solvability under O, as the previous problem has an
exponential number of constraints. A particular case in which Γ is polyhedral and that
has received attention in the literature is whenever the matrices 𝐶 and 𝐴𝑖, 𝑖 ∈ [𝑟] are
simultaneously diagonalizable. This is the content of observation 1.2, which we now
prove.

Proof of Observation 1.2. Also see [155], Lemma 9 . Let 𝑈 be a matrix that simulta-
neously diagonalizes matrices 𝐶 and 𝐴𝑖, 𝑖 ∈ [𝑟] i.e. the matrices 𝐶′ = 𝑈⊤𝐶𝑈

and 𝐴′
𝑖
= 𝑈⊤𝐴𝑖𝑈 are all diagonal. By Silvester’s law of inertia [78], we have that

𝐶 − A(𝑦) ⪰ 0 if and only if 𝑈⊤ [𝐶 − A(𝑦)]𝑈 ⪰ 0 if and only if 𝐶′ − ∑𝑟
𝑖=1 𝑦𝑖𝐴

′
𝑖
⪰ 0.

Hence, we have

Γ = {𝑦 ∈ R𝑟 : 𝐶′ −
𝑟∑︁
𝑖=1

𝑦𝑖𝐴
′
𝑖 ⪰ 0}

which is a polyhedral set since all matrices involved are diagonal. □

For a clear exposition of the implications of this observation to QCQPs see [155]
and the references therein. In addition, the authors show that the region Γ might be
polyhedral even if the matrices 𝐶 and {𝐴𝑖} 𝑖∈[𝑟] are not simultaneously diagonalizable.
Although the latter condition is much more stringent, it allows us to avoid the need to
have the vertices of Γ given to us explicitly, as Theorem 1.1 requires.

Theorem 1.2. Let SDP be a semidefinite program with dual DSDP. Suppose that
the set of matrices {𝐶, 𝐴1, . . . , 𝐴𝑟} is simultaneously diagonalizable. Then, SDP is
solvable under O.

Proof. Let 𝑈 be a orthogonal matrix that simultaneously diagonalizes 𝐶 and 𝐴𝑖 for
each 𝑖 ∈ [𝑟]. Let 𝑣1, . . . .𝑣𝑛 denote the columns of 𝑈 and set S = {𝑣1, . . . , 𝑣𝑛}. Let 𝑝∗

be a dual optimal solution with𝐶−A(𝑝∗) = 𝑆∗ where 𝑆∗ is positive semidefinite. Since
𝑈 diagonalizes each 𝐴𝑖, 𝑖 ∈ [𝑟] and 𝐶, it is clear that the matrix 𝑈⊤ [𝐶 − A(𝑝)]𝑈 is
diagonal. In other words, the matrix 𝑈⊤𝑆∗𝑈 = 𝐷 for some diagonal matrix 𝐷 with
non-negative entries. This means that we can express 𝑆∗ as
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𝑆∗ =
𝑛∑︁
𝑖=1

𝛽∗𝑖 𝑣𝑖𝑣
⊤
𝑖 , 𝛽

∗
𝑖 ∈ R+ ∀ 𝑖 ∈ [𝑛] .

We turn our attention the linear relaxation of SDP defined by S, defined in Section 1.1,
which we recall is given by

min
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

s.t: ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖, ∀𝑖 ∈ [𝑟],
𝑣⊤𝑋𝑣 ≥ 0 ∀ 𝑣 ∈ S.

(𝐿S)

This program is linear and is a relaxation of SDP as any feasible solution to it is feasible
for 𝐿S . Its dual is given by

max
𝑦,∈R𝑛,𝛽∈R𝑛+

𝑏⊤𝑦

s.t: 𝐶 −
𝑟∑︁
𝑖=1

𝑦𝑖𝐴𝑖 =

𝑛∑︁
𝑖=1

𝛽𝑖𝑣𝑖𝑣
⊤
𝑖 .

(𝐷𝐿S)

Observe that this program is a strenghening of program DSDP, and that 𝑆∗ is feasible
for this program. Therefore, their optimal values must match, and in particular the
optimal value of 𝐷𝐿S is finite. By strong duality of linear programs, 𝐿S is solvable
and its optimal value equals the optimal value of both DSDP and 𝐷𝐿S . Again by our
strong duality assumption of programs SDP and DSDP, program 𝐿S solves SDP.

□

A class of problems that has been extensively studied in the literature and where the
hypothesis of our previous theorem applies are simultaneously-diagonalizable QCQPs.
Recall that a QCQP is a problem of the form

inf
𝑥∈R𝑛

𝑞0(𝑥) : 𝑞𝑖 (𝑥) ≤ 0 ∀ 𝑖 ∈ [𝑟] . (QCQP)

where 𝑞0(𝑥) = 𝑥⊤𝐶𝑥 + 𝑑⊤0 𝑥 + 𝑏0 and where 𝑞𝑖 (𝑥) = 𝑥⊤𝐴𝑖𝑥 + 2𝑑⊤
𝑖
𝑥 + 𝑏𝑖 with 𝐶, 𝐴𝑖 ∈ S𝑛,

𝑑0, 𝑑𝑖 ∈ R𝑛 and 𝑏0, 𝑏𝑖 ∈ R for all 𝑖 ∈ {1, . . . , 𝑟}. QCQPs are NP-hard to solve in general
but admit tractable convex relaxations. The SDP relaxation of a QCQP is given by the
following semidefinite program [12, 145]:
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inf
𝑥∈R𝑛,𝑋∈S𝑛

⟨𝐶, 𝑋⟩ + 2𝑑⊤0 𝑥 + 𝑏0

s.t : ⟨𝐴𝑖, 𝑋⟩ +2𝑑⊤𝑖 𝑥 + 𝑏𝑖 ≤ 0 ∀𝑖 ∈ [𝑟][
𝑋 𝑥

𝑥⊤ 1

]
⪰ 0.

(1.1)

Whenever the C and the 𝐴𝑖 are simultaneously diagonalizable and we have access
to a matrix 𝑈 such that 𝐶 = 𝑈⊤𝐷0𝑈 and 𝐴𝑖 = 𝑈⊤𝐷𝑖𝑈 for 𝑖 ∈ {1, . . . , 𝑟}, we can
perform the change of variables 𝑦 = 𝑈𝑥 and 𝑑𝑖 = 𝑈𝑑𝑖, 𝑖 ∈ {0, . . . , 𝑟} to obtain the a
diagonalized version of the problem

inf
𝑦∈R𝑛

𝑞0(𝑦) : 𝑞𝑖 (𝑦) ≤ 0 ∀ 𝑖 ∈ [𝑟] (1.2)

However, we have 𝑞𝑖 (𝑦) = 𝑎⊤
𝑖
𝑦2 + 2𝑑⊤

𝑖
𝑦 + 𝑑𝑖, 𝑎𝑖 ∈ R𝑛, 𝑑𝑖 ∈ R𝑛 and 𝑐𝑖 ∈ R for each

𝑖 ∈ [0, . . . , 𝑟]. Here, 𝑦2 ∈ R𝑛 is the vector whose entries are the squared entries of
the vector 𝑦 ∈ R𝑛. Ben-Tal and den Hertog [15] and Locatelli [98] study a certain
second order cone relaxation of this problem, and show that the optimal value of that
relaxation and that of the SDP relaxation match. Our results imply that in fact, given
access to a matrix 𝑈 that simultaneously diagonalizes the 𝐶 and 𝐴𝑖, 𝑖 ∈ [1, . . . , 𝑟] we
can solve the SDP relaxation (1.1) with the linear program 𝐿S where S is the set of
columns of 𝑈.

Corollary 1.1. Consider a quadratically constrained quadratic problem given as in
QCQP and such that the matrices 𝐶, {𝐴𝑖}𝑖∈{1,...,𝑟} are simultaneously diagonalizable
by an orthogonal matrix 𝑈. Let 𝑜𝑝𝑡 be the optimal value of relaxation (1.1) of QCQP.
Let S be the set of columns of 𝑈. Then, the objective value 𝑧 of the linear relaxation
𝑆𝑃S of (1.1) equals 𝑜𝑝𝑡.

Proof. The proof is immediate from Theorem 1.2. □

Finding initial sets
As we have seen in Theorem 1.2, we know some vectors whose inclusion inS guarantees
solvability under O. The reason this worked was that we were able to produce a
feasible solution to 𝐷𝐿S which matches the objective of an optimal solution to DSDP.
Nonetheless, the previous argument still holds for a generic feasible solution to DSDP:
any dual feasible solution will generate setsS that satisfy the corresponding dual bound.
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Lemma 1.1. Consider a generic SDP problem and let �̂� be a feasible solution to the
dual of the SDP with objective value 𝑏⊤ �̂�. Let S = E(𝐶 − A( �̂�)). Then, the objective
value 𝑧∗ of program 𝐿S satisfies

𝑧∗ ≥ 𝑏⊤ �̂�.

The proof of this lemma is very similar to that of Theorem 1.2. This result indicates
that finding a good set S amounts to finding feasible solutions to the dual of SDP
whose objective value is close to optimal. This task is akin to finding good feasible
solutions to SDP, or at worse to solve a semidefinite feasibility problem, which in
principle may be as hard as solving the original problem. However, the results of the
previous subsection suggest a way to get around this issue by exploiting simultaneous
diagonalizability. Under a weakening of this assumption, we will be able to construct
solutions, which will be automatically feasible for the the DSDP. To begin, we give
in Proposition 1.1 a characterization of simultaneous diagonalizability which we will
then relax.

Lemma 1.2. Let {𝐴𝑖}𝑖∈𝐼 ⊆ S𝑛 be a set of symmetric matrices. Then, there exists a
basis of orthonormal vectors {𝑢1, . . . , 𝑢𝑛} that simultaneously diagonalizes {𝐴𝑖}𝑖∈𝐼 if
and only if 𝐴𝑖 and 𝐴 𝑗 commute for every 𝑖 and 𝑗 ∈ 𝐼, i.e, 𝐴𝑖𝐴 𝑗 = 𝐴 𝑗 𝐴𝑖 ∀𝑖, 𝑗 ∈ 𝐼.

See [40] for a proof.

Proposition 1.1. The set of matrices {𝐴1, . . . 𝐴𝑟} ⊆ S𝑛 is simultaneously diagonal-
izable if and only if for every 𝑝 and 𝑞 ∈ R𝑟 the matrices A(𝑝) =

∑𝑟
𝑖=1 𝑝𝑖𝐴𝑖 and

A(𝑞) = ∑𝑟
𝑖=1 𝑞𝑖𝐴𝑖 commute, and hence are simultaneously diagonalizable.

Proof. Necessity is trivial by having 𝑝 and 𝑞 range over the standard basis of R𝑟 and
Lemma 1.2. For sufficiency, Let 𝑈 be an orthonormal matrix such that the matrices
𝑈⊤𝐴𝑖𝑈 = 𝐷𝑖 are diagonal ∀𝑖 ∈ [𝑟]. Given 𝑝 and 𝑞 ∈ R𝑟 we have:

𝑈⊤A(𝑝)𝑈 = 𝑈⊤
(

𝑟∑︁
𝑖=1

𝑝𝑖𝐴𝑖

)
𝑈 =

𝑟∑︁
𝑖=1

𝑝𝑖𝐷𝑖 .

Similarly we have 𝑈⊤A(𝑞)𝑈 =
∑𝑚

𝑖=1 𝑞𝑖𝐷𝑖. Since diagonal matrices commute we have

(
𝑟∑︁
𝑖=1

𝑝𝑖𝐷𝑖

) (
𝑟∑︁
𝑖=1

𝑞𝑖𝐷𝑖

)
=

(
𝑟∑︁
𝑖=1

𝑞𝑖𝐷𝑖

) (
𝑟∑︁
𝑖=1

𝑝𝑖𝐷𝑖

)
.
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Given that 𝑈⊤𝑈 = 𝐼, pre-and post-multiplying by 𝑈 and 𝑈⊤ respectively gives:

𝑈

(
𝑟∑︁
𝑖=1

𝑝𝑖𝐷𝑖

)
𝑈⊤𝑈

(
𝑟∑︁
𝑖=1

𝑞𝑖𝐷𝑖

)
𝑈⊤ = 𝑈

(
𝑟∑︁
𝑖=1

𝑞𝑖𝐷𝑖

)
𝑈⊤𝑈

(
𝑟∑︁
𝑖=1

𝑝𝑖𝐷𝑖

)
𝑈⊤

and finally

A(𝑝)A(𝑞) = A(𝑞)A(𝑝).

Since these matrices commute, they are simultaneously diagonalizable.

□

Given that commutativity of the set {𝐶, 𝐴1, . . . , 𝐴𝑟} will typically not hold, we relax
the equivalent condition given by the previous lemma to require that commutativity
holds only for special class of 𝑝’s and 𝑞’s. In particular we will set 𝑝 = 𝑒𝑟+1 and 𝑞

such that for some subset 𝐽 ⊆ [𝑟] we have
∑

𝑗∈𝐽 𝑞 𝑗 𝐴 𝑗 = 𝐼𝑛. The idea is that if we
have a point 𝑦 ∈ R𝑛, not necessarily dual feasible for which the matrices 𝐶 and A(𝑦)
commute, then taking S to be the columns of a matrix that diagonalizes them will yield
a linear program with objective value as good as the best dual feasible solution that lies
on the set

{𝐴 ∈ S𝑛 : ∃ 𝑥, 𝑡 ∈ R : 𝐴 = 𝑡 𝐼𝑛 + 𝑥
∑︁

𝑗∈[𝑟]\𝐽
𝑞 𝑗 𝐴 𝑗 }.

Theorem 1.3. Consider a generic semidefinite optimization problem of the form SDP,
with dual DSDP. Suppose that there exists vectors 𝑞1, 𝑞2 ∈ R𝑟 whose support is disjoint
such that

∑𝑟
𝑗=1 𝑞

1
𝑗
𝐴 𝑗 = 𝐼𝑛 and such that the matrices 𝐶 and

∑𝑟
𝑗=1 𝑞

2
𝑗
𝐴 𝑗 commute and

therefore are simultaneously diagonalizable by some orthogonal matrix𝑈. Let S to be
the set of columns of such an 𝑈. Then, the optimal value 𝑧 of program 𝐿S satisfies the
bound

©«
𝑟∑︁
𝑗=1

𝑏 𝑗𝑞
2
𝑗

ª®¬ 𝑥 + ©«
𝑟∑︁
𝑗=1

𝑏 𝑗𝑞
1
𝑗

ª®¬ 𝑡 ≤ 𝑧

for any 𝑥 and 𝑡 such that the matrix 𝐶 − 𝑥

(∑𝑟
𝑗=1 𝑞 𝑗 𝐴 𝑗

)
+ 𝑡 𝐼𝑛 is positive semidefinite.
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Proof. Let𝑈 be a matrix that simultaneously diagonalizes 𝐶 and A(𝑞2) = ∑𝑟
𝑗=1 𝑞

2
𝑗
𝐴 𝑗 .

Let 𝑧 be the optimal value of program 𝐿S where S is the set of columns 𝑣1, . . . , 𝑣𝑛 of
𝑈. Recall that the dual of this program is given by

max
𝑦,∈R𝑛,𝛽∈R𝑛+

𝑏⊤𝑦

s.t: 𝐶 −
𝑟∑︁
𝑖=1

𝑦𝑖𝐴𝑖 =

𝑛∑︁
𝑖=1

𝛽𝑖𝑣𝑖𝑣
⊤
𝑖 .

(𝐷𝐿S)

Since 𝑈 diagonalizes 𝐶, any column 𝑣 of 𝑈 is an eigenvector of 𝐶 with some corre-
sponding eigenvalue 𝜆, and the same holds for A(𝑞) with some eigenvalue 𝛾. Hence,
𝑣 is a eigenvector of 𝐶 − 𝑥A(𝑞) + 𝑡 𝐼𝑛 with corresponding eigenvalue 𝜆 − 𝑥𝛾 + 𝑡. Since
we are looking for 𝑥 and 𝑡 values such that 𝐶 − 𝑥A(𝑞) + 𝑡 𝐼𝑛 is psd, this gives rise to the
equation 𝜆 − 𝑥𝛾 + 𝑡 ≥ 0, and we have such one equation for every column of 𝑈. This
system is always feasible as the 𝑡 variable is free. Hence, there exists 𝑥∗, 𝑡∗ for which
the matrix 𝐶 − 𝑥∗A(𝑞) + 𝑡∗𝐼𝑛 is positive semidefinite. As𝑈 diagonalizes 𝐶, A(𝑞) and
𝐼𝑛 as 𝑈⊤𝐼𝑛𝑈 = 𝑈⊤𝑈 = 𝐼𝑛, 𝐶 − 𝑥∗A(𝑞) + 𝑡∗𝐼𝑛 is diagonalizable by 𝑈 and thus can be
written as

∑
𝑖 𝜂𝑖𝑣𝑖𝑣

⊤
𝑖

with 𝜂𝑖 ≥ 0 for 𝑖 ∈ [𝑛]. Thus, setting 𝑦 𝑗 = 𝑥∗𝑞2
𝑗
if 𝑗 belongs to the

support of 𝑞2 and 𝑦 𝑗 = 𝑡∗𝑞1
𝑗
if 𝑗 belongs to the support of 𝑞1 (here recall that 𝑞1 and 𝑞2

have disjoint support) gives a feasible solution to program 𝐷𝐿S by setting 𝜂𝑖 = 𝛽𝑖 for
𝑖 ∈ [𝑛]. The objective value of this solution is

©«
𝑟∑︁
𝑗=1

𝑏 𝑗𝑞
2
𝑗

ª®¬ 𝑥∗ + ©«
𝑟∑︁
𝑗=1

𝑏 𝑗𝑞
1
𝑗

ª®¬ 𝑡∗. (1.3)

□

We make a few observations about this theorem. First and foremost, we didn’t require
that the matrix 𝐼𝑛 +

∑𝑟
𝑗=1 𝑞 𝑗 𝐴 𝑗 is feasible for program DSDP. Second, notice that

we have required that we can aggregate some of the 𝐴 𝑗 to form the identity matrix.
Although this seems quite constraining, it is always the case that such a combination
exists by our assumption that 𝐷𝑆𝐷𝑃 is strictly feasible, i.e if there exists 𝑞 ∈ R𝑟 such
that𝐶−A(𝑞) ≻ 0. In principle, finding such 𝑞 would require finding finding a point in
the interior of the dual feasible region, which might be non-trivial. This suggests that
our theorem is easier to apply in regimes where it is more directly “obvious " which
combination of the 𝐴 𝑗 forms the identity. This is the case in the max cut problem, the
Lovász theta number, the sparse PCA problem, the extended trust region SDP relaxation
and many others. Finally, we observe that even though the bound given in Equation 1.3
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is the best bound we can prove, there might be other “hidden " dual feasible solutions
that certify a better bound for 𝐿S .

Observation 1.3 (Hidden basis property). Let �̂� be a dual feasible solution for program
DSDP with objective value 𝑏⊤ �̂�. Suppose that 𝑦 ∈ R𝑟 is a point such that the matrices
𝐶 −A( �̂�) and 𝐶 −A(𝑦) (which is not necessarily PSD) share a basis of orthonormal
eigenvectors. Let S = E(𝐶 − A(𝑦)) then, the optimal value 𝑧 of program 𝐿S satisfies

𝑏⊤ �̂� ≤ 𝑧.

The proof of this observation is straightforward, but note that we have required S to be
some eigenbasis of 𝐶 −A(𝑦) rather than the set of columns of some orthogonal matrix
that simultaneously diagonalizes 𝐶 and A(𝑦). Clearly, if 𝑈 diagonalizes both of those
matrices it diagonalizes any linear combination of them. As we will see in the max
cut experiments, Theorem 1.3 will certify a spectral bound, but the LP relaxation will
actually have a better objective than the bound of Theorem 1.3 guarantees in practice.

Finding commuting matrices
To apply Theorem 1.3, we need first to find a combination of the constraints matrices
which commutes with the objective matrix 𝐶 of 𝑆𝐷𝑃. This can be accomplished using
a linear program. Picking 𝐿 to be an arbitrary linear function on 𝑦 gives the program

min
𝑦∈R𝑛

𝐿 (𝑦)

s.t: 𝐶A(𝑦) = A(𝑦)𝐶.
(1.4)

To select 𝐿, we propose a function that trades off between the ℓ1 norm of the matrix
𝐶−A(𝑦) and the dual objective function 𝑏⊤𝑦. The intention of the ℓ1 term is to promote
solutions where 𝐶 −A(𝑦) is sparse, rendering the computation of an eigenbasis easier.
The term −𝑏⊤𝑦 encourages having solutions with good dual objective value. This
yields the program

min
𝑦∈R𝑛

∑︁
𝑖, 𝑗

��[𝐶 − A(𝑦)]𝑖 𝑗
�� − 𝑏⊤𝑦

s.t: 𝐶A(𝑦) = A(𝑦)𝐶.
(CG)

Note that the null vector is always a feasible solution to this program. In Section 1.5
we experimentally test this idea.
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1.3 Linear Relaxations of the max cut semidefinite program
The question of exactly - or approximately - solving an SDP with a linear program finds
one of its historical roots in the max cut problem, where in a given undirected graph,
we seek a bipartition of the nodes to maximize the number of edges with one end in
both parts. Since linear programming has been one of the main paradigms to tackle
NP-hard combinatorial optimization problems through the relax-and-round paradigm,
substantial efforts were dedicated to find a linear programming relaxation of the max
cut problem. A graph with 𝑚 edges has always a cut of size at least 1

2𝑚 and any cut
can cut at most 𝑚 edges, so it is trivial to provide an algorithm with integrality gap 2 2.
For example, a randomized algorithm picking vertices at random or a greedy algorithm
will have this guarantee. The question was then if there exists a linear program that
could have an approximation ratio better than 2.

The starting point of this line of research was perhaps the linear relaxation for max cut
given by [13, 133]. Let 𝐺 = (𝑉, 𝐸) be an undirected, simple graph on 𝑚 edges and 𝑊

its adjacency matrix. We define

𝛼(𝐺) := max⟨𝑊, 𝑋⟩

𝑋𝑖 𝑗 + 𝑋𝑖𝑘 + 𝑋𝑘 𝑗 ≤ 2 ∀𝑖, 𝑗 , 𝑘 ∈ 𝑉

𝑋𝑖 𝑗 − 𝑋𝑖𝑘 − 𝑋 𝑗 𝑘 ≤ 0 ∀𝑖, 𝑗 , 𝑘 ∈ 𝑉

0 ≤ 𝑋𝑖 𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ 𝑉.

(1.5)

Here we use a binary variable 𝑋𝑖 𝑗 for each pair of vertices {𝑖, 𝑗} to denote if the edge
between them is cut. The first set of ‘triangle’ constraints specify that at most two edges
can be picked in a cut from any triangle, while the second set rules out exactly one
edge from any triangle from being selected in a cut. In [133], Poljak and Tuza prove
that for sparse and dense versions of Erdős-Rényi random graphs, the integrality gaps
of this LP tend to 2 − 𝑜(1) and 4

3 − 𝑜(1) respectively. Here, 𝐺𝑛,𝑝 denotes the class of
random graphs on 𝑛 nodes where every edge is included independently of others with
probability 𝑝.

Theorem 1.4. (Poljak, Tuza) [133] Let 𝑚𝑐(𝐺) denote the size of the max cut of 𝐺.

• (Sparse graphs). Let 𝑝(𝑛) be a function such that 0 < 𝑝 < 1, 𝑝(𝑛) · 𝑛 → ∞ and
𝑝 · 𝑛1−𝑎 → 0 for every 𝑎 > 0, then the expected relative error 𝛼(𝐺𝑛,𝑝)−𝑚𝑐(𝐺𝑛,𝑝)

𝑚𝑐(𝐺𝑛,𝑝)
tends to 1 as 𝑛 → ∞ with probability 1 − 𝑜(1).

2In this thesis, we employ the convention that the integrality gap is a number that is at least 1 and
hence is the ratio of the value of the relaxation to the optimal value of the max cut.
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• (Dense graphs). Let 𝑝(𝑛) be a function such that 0 < 𝑝 < 1, 𝑝(𝑛) = Ω

(√︃
log(𝑛)

𝑛

)
.

Then the expected relative error 𝛼(𝐺𝑛,𝑝)−𝑚𝑐(𝐺𝑛,𝑝)
𝑚𝑐(𝐺𝑛,𝑝) , tends to 1

3 as 𝑛 → ∞ with
probability 1 − 𝑜(1).

Such integrality gap lower bounds for the basic LP encouraged two distinct approaches
to solve the problem. The first one focused on adding valid constraints to formulation
(1.5), such as “hypermetric”, and “gap” constraints. See [45, 123] for more details.
Nonetheless, a long line of research culminated in showing that such direct strength-
enings will fail to provide an approximation factor better than 2 [32, 33, 152]. In
particular, Kothari et al. [89] prove that this problem - and more generally Constraint
Satisfaction Problems - is resistant to this strategy by showing that extended linear
formulations are as powerful as the Sherali-Adams hierarchy, which in turn requires
an exponential number of rounds (in 𝜀) to certify an integrality gap better than 2 − 𝜀.
The second approach, perhaps much more influential, considered stronger optimiza-
tion relaxations, such as the vector optimization relaxation of Poljak and Rendel [132],
shown to be SDP-representable and providing an approximation ratio of ∼ 1.13 in the
seminal work of Goemans and Williamson [64]. Naturally, this leads to the question
if linear programs can well approximate semidefinite ones. In [26] Braun et. al. show
that in principle one needs an exponential number of a constraints in an LP to cor-
rectly approximate an SDP. These two combined results extinguish the hope that linear
programming may be used to approximate max cut. Since the question of finding a
good set S to initialize Algorithm 1 amounts to finding a linear approximation to a
semidefinite program, these results suggest that no systematic procedure can generate
a good set S as in particular they would provide an approach to obtain a low-gap linear
programming approximation to the max cut problem. In this sense, we propose to
use instance-specific information to avoid the hardness of approximation results, in
particular by exploiting bounds relating the spectrum of the graph to the value of the
max cut, resulting in linear relaxations with better approximation ratios.

For a graph 𝐺 = (𝑉, 𝐸) we set 𝑚 = |𝐸 | and denote by 𝑊 its adjacency matrix. Recall
that the semidefinite relaxation for max cut due to of Poljak, Rendl, Goemans and
Williamson [64, 132] is given by

1
2
𝑚 + 1

4
max
𝑋

⟨−𝑊, 𝑋⟩

s.t: 𝑋 ⪰ 0, 𝑋𝑖𝑖 = 1, ∀ 𝑖 ∈ [𝑛] .
(GW)
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with dual

1
2
𝑚 + 1

4
min
𝛾∈R𝑛

𝑛∑︁
𝑖=1

𝛾𝑖

s.t: 𝑊 + 𝑑𝑖𝑎𝑔(𝛾) ⪰ 0.

(DGW)

It is known that strong duality holds for this pair of programs: both (GW) and (DGW)
are solvable and their objectives coincide. Delorme and Poljak show [42] that the max
cut value of 𝐺 on 𝑛 nodes is upper bounded by the quantity

min
𝑢∈R𝑛:

∑
𝑖 𝑢𝑖=0

𝑛

4
𝜆1(L(𝐺) + 𝑑𝑖𝑎𝑔(𝑢)).

It turns out that this program is equivalent to program DGW [64]. In their seminal work,
Goemans and Williamson show that this program achieves an approximation ratio of
roughly 1

0.878 ∼ 1.138. Through this equivalence, one can show that the semidefinite
program GW satisfies a series of eigenvalue bounds. For instance, one may take 𝑢 such
that

∑𝑛
𝑖=1 𝑢𝑖 = 0 and all of the diagonal entries of the matrix L(𝐺) + 𝑑𝑖𝑎𝑔(𝑢) equal

2𝑚
𝑛

. This results in what is usually known as the eigenvalue bound for max cut due to
Mohar and Poljak [117]

𝑚𝑐(𝐺) ≤ 1
2
𝑚 + 𝑛

4
𝜆1(−𝑊) = 1

2
𝑚 − 𝑛

4
𝜆𝑛 (𝑊) (1.6)

To see the second equality, recall that for any matrix 𝐴, 𝜆𝑛 = 𝜆1(−𝐴)). See [7,
117] for an elementary proofs of this inequality. As mentioned in [123], conventional
wisdom is that LPs cannot certify even the eigenvalue bound, and we are not aware of
a polynomially sized linear program that certifies this bound.

Instance-specific linear relaxations.
The specialization of program 𝐿S to the max cut problem results in a polynomially sized
linear program that explicitly depends of the adjacency matrix 𝑊 on 𝐺, allowing us to
circumvent the theoretical limitations of linear relaxations described in the introduction
of this section. Using Theorem 1.3 this LP will be shown to satisfy the eigenvalue
bound (1.6) whenever S is chosen appropriately. Fixing S = {𝑣1, . . . , 𝑣𝑘 }, program
𝐿S specializes to a linear program which we denote by program 𝑆𝑃S .

max
𝑋∈S𝑛

1
2
𝑚 + 1

4
⟨−𝑊, 𝑋⟩

s.t: 𝑣⊤𝑋𝑣 ≥ 0 ∀ 𝑣 ∈ S, 𝑋𝑖𝑖 = 1, ∀ 𝑖 ∈ [𝑛], ∥𝑋 ∥∞ ≤ 1.
(𝑆𝑃S)



24

In this program we have included the constraint ∥𝑋 ∥∞ ≤ 1. As the following obser-
vation shows, this is a valid constraint for GW. Adding it is useful because it will
guarantee that the dual of 𝑆𝑃S is always feasible, regardless of 𝐺.

Observation 1.4. Let 𝑋 be feasible for program (GW). Then, it is feasible for program
𝑆𝑃S for any set S ⊆ R𝑛.

Proof. Let 𝑋 be feasible for (GW). This means 𝑋 is positive semidefinite, and that
there exists a set of vectors 𝑥1, . . . , 𝑥𝑛 such that 𝑋𝑖 𝑗 = 𝑥⊤

𝑖
𝑥 𝑗 for all 𝑖, 𝑗 ∈ [𝑛]. For each

𝑖 ∈ [𝑛] we have 𝑋𝑖𝑖 = 1 and thus we see that ∥𝑥𝑖∥2 = 1. It follows that each entry of the
vectors 𝑥𝑖 is bounded by 1 and therefore that 𝑋𝑖 𝑗 is bounded by 1 for all 𝑖 and 𝑗 . The
other two constraints of the linear program are clearly satisfied by 𝑋 .

□

It will be also be useful to consider the following strenghening of program GW de-
pending of S = {𝑣1, . . . , 𝑣𝑘 }.

1
2
𝑚 + 1

4
max
𝜂∈R𝑘

〈
−𝑊,

𝑘∑︁
𝑖=1

𝜂𝑖𝑣𝑖𝑣
⊤
𝑖

〉
s.t: 𝑑𝑖𝑎𝑔

(
𝑘∑︁
𝑖=1

𝜂𝑖𝑣𝑖𝑣
𝑇
𝑖

)
≤ 1, 𝜂𝑖 ≥ 0, 𝑣𝑖 ∈ S ∀𝑖 ∈ [𝑘], 𝑘 = |S|.

(𝑆𝐷S)

Here, and for the rest of the chapter, we denote by 𝑧𝑆𝑃S , 𝑧𝐺𝑊 , 𝑧𝐷𝐺𝑊 , 𝑧𝑆𝐷S the opti-
mal values of 𝑆𝑃S , GW, DGW and 𝑆𝐷S ignoring the additive constant 1

2𝑚 and the
multiplicative constant 1

4 , respectively. For illustration, we have:

𝑧𝐺𝑊 = max ⟨−𝑊, 𝑋⟩
s.t: 𝑋 ⪰ 0, 𝑋𝑖𝑖 = 1, ∀ 𝑖 ∈ [𝑛] .

By duality, we get the following relationships between these optimal values

𝑧𝑆𝐷S ≤ 𝑧𝐺𝑊 = 𝑧𝐷𝐺𝑊 ≤ 𝑧𝑆𝑃S .

Observe that we may employ different sets S to define 𝑆𝑃 and 𝑆𝐷 and the above
relations will continue to hold. As a sanity check, we first observe that program 𝑆𝑃S

satisfies the trivial bound for max cut.
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Lemma 1.3. Let S be an arbitrary subset of R𝑛. Then 𝑧𝑆𝑃S satisfies:

𝑧𝑆𝑃S ≤ 2𝑚

and therefore 1
2𝑚 + 1

4 𝑧𝑆𝑃S ≤ 𝑚.

Proof. Let S = {𝑣1, . . . , 𝑣𝑘 }. The dual of program 𝑆𝑃S is given by

min
𝜆,𝛼,𝛿,𝛽,Λ

1
2
𝑚 − 1

4

[
𝑡𝑟 (Λ) −

∑︁
𝑖≠ 𝑗

𝛿𝑖 𝑗 −
∑︁
𝑖≠ 𝑗

𝛼𝑖 𝑗

]
s.t: 𝑊 − Λ =

𝑘∑︁
𝑖=1

𝛽𝑖𝑣𝑖𝑣
⊤
𝑖 ,

𝛿𝑖 𝑗 ≥ 0 ∀𝑖 ≠ 𝑗 ∈ [𝑛],
𝛼𝑖 𝑗 ≥ 0 ∀𝑖 ≠ 𝑗 ∈ [𝑛],
𝜆𝑖 ∈ R ∀𝑖 ∈ [𝑛],
𝛽𝑖 ≥ 0 ∀𝑖 ∈ [𝑛],

Λ ∈ S𝑛,Λ𝑖 𝑗 =𝛿𝑖 𝑗 − 𝛼𝑖 𝑗 ∀𝑖 ≠ 𝑗 ∈ [𝑛],Λ𝑖𝑖 = 𝜆𝑖 ∀𝑖 ∈ [𝑛] .

(𝐷𝑆𝑃S)

To see this we ignore the constant 1
2𝑚 in the objective together with the multiplicative

term 1
4 . Introduce dual variables 𝜆𝑖 ∈ R for 𝑖 ∈ [𝑛] corresponding to the constraints

𝑋𝑖𝑖 = 1, 𝛽𝑖 ∈ R𝑛+ for 𝑖 ∈ [𝑘] corresponding to 𝑣⊤𝑋𝑣 ≥ 0 and 𝛼𝑖, 𝑗 , 𝛿𝑖, 𝑗 ≥ 0 for
𝑖 ≠ 𝑗 ∈ [𝑛], corresponding to 𝑋𝑖 𝑗 ≤ 1 and 𝑋𝑖 𝑗 ≥ −1 respectively, for 𝑖 ≠ 𝑗 ∈ [𝑛]
(in fact we need only to consider the indices 𝑖 < 𝑗 since 𝑋 is symmetric but we will
ignore this as it only complicates the proof). Multiplying the dual variables with the
constraints accordingly gives the inequality

𝑛∑︁
𝑖=1

𝜆𝑖𝑋𝑖𝑖 +
𝑘∑︁
𝑖=1

𝛽𝑖 ⟨𝑋, 𝑣𝑖𝑣⊤𝑖 ⟩ −
∑︁
𝑖≠ 𝑗

𝛼𝑖 𝑗𝑋𝑖 𝑗 +
∑︁
𝑖≠ 𝑗

𝛿𝑖 𝑗𝑋𝑖 𝑗 ≥
𝑛∑︁
𝑖=1

𝜆𝑖 −
∑︁
𝑖≠ 𝑗

𝛿𝑖 𝑗 −
∑︁
𝑖≠ 𝑗

𝛼𝑖 𝑗

Let Λ𝑖 𝑗 = 𝛿𝑖 𝑗 − 𝛼𝑖 𝑗 for 𝑖 ≠ 𝑗 and Λ𝑖𝑖 = 𝜆𝑖 for all 𝑖 ∈ [𝑛]. This gives the inequality

⟨Λ, 𝑋⟩ +
𝑘∑︁
𝑖=1

𝛽𝑖 ⟨𝑋, 𝑣𝑖𝑣⊤𝑖 ⟩ ≥
𝑛∑︁
𝑖=1

Λ𝑖𝑖 −
∑︁
𝑖≠ 𝑗

Λ𝑖 𝑗 .

If we let Λ + ∑𝑘
𝑖=1 𝛽𝑖𝑣𝑖𝑣

⊤
𝑖
= 𝑊 we get
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⟨−𝑊, 𝑋⟩ ≤
∑︁
𝑖≠ 𝑗

Λ𝑖 𝑗 −
𝑛∑︁
𝑖=1

Λ𝑖𝑖

Letting 𝛽𝑖 = 0 ∀𝑖 ∈ [𝑛], Λ = 𝑊 where 𝛿𝑖 𝑗 = 1, 𝛼𝑖 𝑗 = 0 whenever 𝑊𝑖 𝑗 = 1 and
0 otherwise, we obtain a feasible solution for the previous program with 𝑡𝑟 (Λ) −∑

𝑖≠ 𝑗 𝛿𝑖 𝑗 −
∑

𝑖≠ 𝑗 𝛼𝑖 𝑗 = −2𝑚.

□

It can be checked that for an arbitrary graph 𝐺, the feasible region of program DGW,
namely Γ = {𝛾 ∈ R𝑛 : 𝑊 + 𝑑𝑖𝑎𝑔(𝛾) ⪰ 0} is not necessarily polyhedral. However,
we can exploit Theorem 1.3 to derive a set S for the relaxation 𝑆𝑃S that has a good
objective value. Although this statement can be proven directly by simply giving a
judicious choice of S, we derive the result in a way that explicitly uses the theorem.

Theorem 1.5. Let 𝐺 be a graph on 𝑛 vertices and 𝑊 its adjacency matrix. Let 𝜆𝑛
denote the smallest eigenvalue of 𝑊 . Set S = E(𝑊). Then

𝑧𝑆𝑃S ≤ −𝑛𝜆𝑛 := 𝜒(𝐺).

Proof. For 𝑖 = 1, . . . , 𝑛 let the matrix 𝐴𝑖 denote the matrix of all zeros but with a single
1 in its 𝑖-th diagonal entry. Hence, Γ can be expressed as:

Γ = {𝛾 ∈ R𝑛 : 𝑊 +
𝑛∑︁
𝑖

𝛾𝑖𝐴𝑖 ⪰ 0}.

To apply Theorem 1.3, we express the identity as some combination of the 𝐴𝑖. con-
cretely, we let �̂� = ®1 be the vector of all ones in R𝑛 so that we have that

∑𝑛
𝑖=1 �̂�𝑖𝐴𝑖 = 𝐼𝑛.

By Theorem 1.3, it follows that if S = E(𝑊) then the optimal value 𝑧𝑆𝑃S of program
𝑆𝑃S satisfies

𝑧𝑆𝑃S ≤ 𝑡 · 𝑛

for any 𝑡 such that 𝑊 + 𝑡 𝐼 is positive semidefinite. Observe that 𝑊 − 𝜆𝑛𝐼 is positive
semidefinite. In particular, we obtain

𝑧𝑆𝑃S ≤ −𝑛𝜆𝑛.

□
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We next provide an alternate, direct proof of this result by directly setting S = E(𝑊)
and using the dual of program 𝑆𝑃S .

Alternative proof of Theorem 1.5. The inequality holds if we are able to show a fea-
sible solution of the dual program of (𝑆𝑃S) whose objective value equals −𝑛𝜆𝑛. Let
S = {𝑣1, 𝑣2, . . . , 𝑣𝑛} = E(𝑊). Consider an eigenvector 𝑣 of 𝑊 with correspond-
ing eigenvalue 𝜆, so that 𝑊𝑣 = 𝜆𝑣. Observe that 𝜆 − 𝜆𝑛 ≥ 0 since 𝜆𝑛 is the
most negative eigenvalue of 𝑊 . Clearly, the vector 𝑣 is a eigenvector of the ma-
trix 𝑊 − 𝜆𝑛𝐼𝑛 with corresponding eigenvalue 𝜆 − 𝜆𝑛. By the spectral theorem, we have
𝑊 − 𝜆𝑛𝐼𝑛 =

∑𝑛
𝑖=1(𝜆𝑖 − 𝜆𝑛)𝑣𝑖𝑣𝑇𝑖 , where 𝑣1, . . . , 𝑣𝑛 are an orthonormal eigenbasis of 𝑊 .

In other words, we have:

𝜆𝑛𝐼𝑛 +
𝑛∑︁
𝑖=1

(𝜆𝑖 − 𝜆𝑛)𝑣𝑖𝑣𝑇𝑖 = 𝑊.

This yields the desired feasible solution Λ = −𝜆𝑛𝐼𝑛 which has an objective value
1
2𝑚 − 𝑛

4𝜆𝑛 for 𝐷𝐿S . □

Interestingly, this result allows us to show that the linear relaxation 𝑆𝑃S is strictly
stronger than the linear formulation for max cut given in program (1.5), in the sense
that it gives -in contrast to the previous LP- the correct value of max cut for the graphs
considered in Theorem 1.4. Perhaps more interestingly, we show that for random
𝑑−regular graphs the linear program 𝑆𝑃S with S = E(𝑊) approximates max cut with
an approximation factor of 1 +𝑂 ( 1√

𝑑
). This result is quite striking as it is precisely for

random 𝑑− regular graphs (with 𝑑 ∈ 𝑂 (1)) that the hardness of approximation for max
cut using the Sherali-Adams hierarchy was shown [32, 33, 89, 152]. These two claims
are the content of the next two corollaries.

Corollary 1.2. Let 𝐺 = 𝐺 (𝑛, 𝑝) be sampled according to the Erdős-Rényi model [59]
where 𝑝 is a function of 𝑛. Let 𝑔(𝑛) be a non-decreasing function of 𝑛. Then, the
ratio

1
2𝑚+ 1

4 𝜒(𝐺)
1
2𝑚

is at most 1 +
√︃

2
𝑔(𝑛) as long as 𝑛𝑝 is at least 𝑔(𝑛)

2 log(𝑛), with high

probability. In particular, for all dense graphs of Theorem 1.4, 𝑛𝑝 ≥ 𝑔(𝑛) ≥
√
𝑛 and

the quotient converges to 1. For sparse graphs of Theorem 1.4 where 𝑛𝑝 = 𝑐 log(𝑛),
the quotient is at most 1 +

√︃
2
𝑐
.

Proof. Let 𝑝 = 𝑝(𝑛) and 𝐺 = 𝐺 (𝑛, 𝑝) be sampled according to the Erdős-Rényi model
with 𝑛𝑝 ∈ Ω( 𝑔(𝑛)2 log(𝑛)). Letting 𝜀 = 1

𝑛
and applying Theorem 1 of [37] we have that

with probability at least 1 − 1
𝑛
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−𝜆𝑛 ≤

√︄
4𝑛𝑝 ln

(
2𝑛
𝜀

)
+ 𝑝.

Recalling that the number of edges 𝑚 of 𝐺 is 𝜃 (𝑛2𝑝) with high probability, a direct
computation of the quantity

1
2𝑚− 1

4𝑛𝜆𝑛
1
2𝑚

gives the result. □

Corollary 1.3. Suppose that 𝐺 is a 𝑑-regular graph with −𝜆𝑛 ≤ 𝑐 ·
√
𝑑 for some

constant 𝑐 and S = E(𝑊). Then, the following inequality holds:

𝑧𝑆𝑃S

𝑧𝑆𝐷S
≤ 1 + 𝑐

√
𝑑
.

Proof. Recall that a 𝑑-regular graph has 𝑚 = 𝑛𝑑
2 edges. This gives 𝑛 = 2𝑚

𝑑
. Suppose

−𝜆𝑛 ≤ 𝑐 ·
√
𝑑. Then, by Theorem 1.5 and that 𝑧𝐺𝑊 ≥ 0 for any graph 𝐺 we get

1
2𝑚 + 1

4 𝑧𝑆𝑃S
1
2𝑚 + 1

4 𝑧𝐺𝑊

≤
1
2𝑚 − 1

4𝑛𝜆𝑛
1
2𝑚

=

1
2𝑚 − 1

4𝜆𝑛
2𝑚
𝑑

1
2𝑚

= 1 − 𝜆𝑛

𝑑
≤ 1 + 𝑐

√
𝑑
.

□

It is known that random 𝑑−regular graphs satisfy the hypothesis of the theorem [55,
58, 149], justifying our previous claim on the guarantees of our linear relaxation on
random 𝑑−regular graphs. Another class of graphs which satisfies the hypothesis of
the theorem are the Ramanujan expander graphs [104], where 𝑐 = 2. We contrast this
result with the fact that the relative error of 𝛼(𝐺)- defined above in LP(1.5)- relative to
the max cut of 𝐺 tends to 1 for Ramanujan graphs [133].

To the best of our knowledge, this is the first linear relaxation of max cut with these
two guarantees.

Hidden basis property and stronger guarantees
In the previous subsection, we considered a bound given by Theorem 1.3 using the
fact that −𝜆𝑛®1 is feasible for program DGW. However, it might very well be the case
that there are other “hidden" dual feasible solutions. Although we are not aware of
any such solutions, it is illustrative to check whether or not program 𝑆𝑃S gives better
solutions than the eigenvalue bound. This raises the question of the quality of our linear
relaxation in the setup where the eigenvalue bounds fails to give an approximation factor
better than 2 for the maximum cut value of a graph. Indeed, the eigenvalue bound is
not powerful enough to provide an approximation factor better than 2 − 𝜀 > 0 for any
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given 𝜀 > 0 in general. As a matter of fact, for any given 𝜀 > 0, there exist a family of
graphs whose maximum cut is bounded above by 1

2𝑚 + 𝜀𝑚, but the eigenvalue bound
cannot certify a bound better than 2 − 𝜀. We give an example of such as class in our
next definition, which is inspired by a remark in [123].

Definition 1.2. We say that a graph 𝐺 is sampled from the class of random graphs
G(𝑛, 𝑑, 𝑙) if 𝐺 has 𝑛 vertices and two disjoint components 𝐺1 and 𝐺2 where 𝐺1 is
a random 𝑑-regular graph, 𝐺2 is complete bipartite graph where each side of the
bipartition has

√
𝑛 nodes, and 𝑙 random edges connect the 𝐺1 and 𝐺2.

Observe that the absolute value of most negative eigenvalue of the adjacency matrix of
a graph sampled from G(𝑛, 𝑑, 𝑙) is Ω(

√
𝑛) due to the bipartite component. If 𝑑 ∈ 𝑂 (1)

then the number of edges in 𝐺 is linear in 𝑛 and so is the maxcut of 𝐺. However, the
eigenvalue bound is weak: it certifies that the maxcut size is at most𝑂 (𝑛1.5) (notice that
this is worse even than the trivial upper bound of 𝑚). This class of graphs is suggested
as an example in [123] as a class of graphs where the eigenvalue bound behaves poorly.
However, our LP certifies a much better value, when 𝑙 = 0, as the next observation
shows:

Lemma 1.4. Let 𝐺 be a graph with two disconnected components 𝐺1 and 𝐺2, where
|𝑉 (𝐺1) | = 𝑛1, |𝑉 (𝐺2) | = 𝑛2, 𝜆1 is the smallest eigenvalue of the adjacency matrix
of graph 𝐺1 and 𝜆2 is the smallest eigenvalue of the adjacency matrix of 𝐺2. Let
S = E(𝑊). Then, 𝑆𝑃S certifies:

𝑧𝑆𝑃S ≤ 𝑛1𝜆
1 + 𝑛2𝜆

2.

Proof. The proof is basically the same as the proof of Theorem 1.5 by observing
that the support of eigenvectors corresponding to disjoint components of a graph are
disjoint. □

This result may seem artificial in the sense that 𝐺 is a disconnected graph. However,
we show through extensive experiments in Tables 1.1 and 1.2 in Section 1.5 that the
quotient of the optimal value 𝑆𝑃S to the GW relaxation is significantly better than
the quotient of 𝜒(𝐺) to the GW relaxation, even when edges are added between the
components in these difficult examples for the eigenvalue bound.
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Solvability of maxcut under O
In the previous subsection, we have seen that we can derive a good starting set S. In
general, program 𝐿S does not solve the max cut SDP. In this subsection we will show
that whenever 𝐺 is a distance regular graph then we have solvability of the max cut
SDP under O. The class of distance-regular graphs contains strongly regular graphs,
which have been extensively studied for their algebraic, combinatorial and spectral
properties [27, 147]. Famous graphs such as the Petersen graph belongs to this class.
In what follows, we give a sufficient condition that ensures that the value of 𝑆𝑃S equals
the optimal value of the GW relaxation, provided that S includes an orthonormal
eigenbasis of 𝑊 .

Definition 1.3 (Distance-regular graphs). For a graph 𝐺 and 𝑢, 𝑣 vertices in 𝑉 (𝐺)
define 𝐺 𝑗 (𝑢) to be the set of vertices of 𝐺 at distance exactly 𝑗 of 𝑢, i.e., the vertices
𝑣 ∈ 𝑉 (𝐺) such that the shortest path joining 𝑢 and 𝑣 has length 𝑗 . We say 𝐺 is distance
regular if it is connected, 𝑑-regular for some 𝑑 and there exists integers 𝑐𝑖, 𝑏𝑖, 𝑖 ∈ N such
that for any two vertices 𝑢, 𝑣 at distance 𝑖 = 𝑑 (𝑢, 𝑣) there are precisely 𝑐𝑖 neighbours
of 𝑣 in 𝐺𝑖+1(𝑢) and 𝑏𝑖 neighbours of 𝑣 in 𝐺𝑖−1(𝑢).

Examples of such graphs are all strongly regular graphs, Hamming graphs, complete
graphs, cycles, and odd graphs (such as the Petersen graph) [27]. The next theorem
will allow us to prove that our linear relaxations are tight for this class of graphs.

Theorem 1.6. Let 𝐺 be a graph and 𝑊 its adjacency matrix. Let S = E(𝑊) and 𝑊𝑛

be the eigenspace of 𝑊 corresponding to 𝜆𝑛. Suppose the dimension of 𝑊𝑛 is 𝑘 with
𝑛 > 𝑘 ≥ 1. Suppose there exists an orthonormal basis U = {𝑢1, . . . , 𝑢𝑘 } of 𝑊𝑛 such
that the matrix 𝐴 with rows 𝑢1, . . . , 𝑢𝑘 has columns with constant 2- norm, i.e. there
exists some 𝑐 ∈ R+ such that ∥𝐴 𝑗 ∥2 = 𝑐 ∀ 𝑗 ∈ [𝑛] where 𝐴 𝑗 denotes the 𝑗-th column of
𝐴. Then, 𝑧𝑆𝐷S equals −𝑛𝜆𝑛 and in particular

𝑧𝑆𝑃S = 𝑧𝐺𝑊 = 𝑧𝑆𝐷S .

Proof. The proof requires two steps. First, we show that if such basis U exists and
we let S = U then the theorem holds. Second, we show that we may set S to be an
arbitrary orthonormal basis of 𝑊𝑛. This is necessary since the dimension of 𝑊𝑛 ≥ 2
and hence orthonormal bases are not unique. This might break the theorem if we
choose any other orthonormal basis for S instead of U. We begin with the first step.
Notice that 𝑐 =

√︃
𝑘
𝑛
. Indeed, since the 𝑢𝑖 are unitary vectors we have that for all

𝑖 ∈ [𝑘] ∑𝑛
𝑗=1 𝐴

2
𝑖, 𝑗

= 1. Summing over 𝑖 gives
∑𝑘

𝑖=1
∑𝑛

𝑗=1 𝐴
2
𝑖, 𝑗

= 𝑘 . By our assumption
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of constant sum of the column vectors, we get
∑𝑘

𝑖=1 𝐴
2
𝑖, 𝑗

= 𝑐2 ∀ 𝑗 ∈ [𝑛]. Summing
over 𝑗 gives

∑𝑛
𝑗=1

∑𝑘
𝑖=1 𝐴

2
𝑖, 𝑗

= 𝑛𝑐2 and we get 𝑘 = 𝑛𝑐2. Let 𝐵 =
√︁

𝑛
𝑘
𝐴⊤ and 𝑌 = 𝐵𝐵⊤.

Let 𝑣𝑖 denote the 𝑖th row of 𝐵, and recall that 𝑣𝑖 has norm
√︃

𝑘
𝑛
. This implies that

𝑌𝑖𝑖 = 𝑣𝑖 · 𝑣𝑖 = 𝑛
𝑘
· 𝑘
𝑛
= 1. Finally, observe that 𝑌 = 𝑛

𝑘

∑𝑘
𝑖 𝑢𝑖 (𝑢𝑖)⊤. It follows that 𝑌 is

feasible for 𝑆𝐷S with S = U. This solution has an objective value

𝑍𝑆𝐷S ≥
〈
−𝑊, 𝐵𝑇𝐵

〉
≥

〈
−𝑊,

𝑛

𝑘

𝑘∑︁
𝑖=1

𝑢𝑖𝑢
𝑇
𝑖

〉
= −𝑛𝜆𝑛.

For the second part, we show that we can take S to be any arbitrary orthonormal basis
of 𝑊𝑛. Notice that the only fact that we used from U is that the matrix 𝐴 formed by
stacking the vectors 𝑢𝑖 as rows has constant column norm. Therefore, it suffices to
show that any matrix 𝐴′ formed in the same way from an arbitrary basis U′ has this
same property. Hence, let U′ = {𝑤1, . . . , 𝑤𝑘 } be an arbitrary basis of 𝑊𝑛 and suppose
that the basis U exists.

Since the vectors{𝑢1, . . . , 𝑢𝑘 } are an orthonormal basis of𝑊𝑛 which is a lineal subspace
ofR𝑛, we can extend this set of vectors to a full orthonormal basis {𝑢1, . . . , 𝑢𝑘 , 𝑢𝑘+1, . . . 𝑢𝑛}
of R𝑛. Further, observe that

∑𝑛
𝑖=1 𝑢𝑖 (𝑢𝑖)⊤ = 𝐼𝑛 where 𝐼𝑛 is the 𝑛 × 𝑛 identity matrix.

To see this, let 𝑣 = 𝑟1𝑢1 + · · · + 𝑟𝑛𝑢𝑛 ∈ R𝑛 be an arbitrary vector expressed in the 𝑢𝑖,
𝑖 ∈ [𝑛] basis. We have

(
𝑛∑︁
𝑖=1

𝑢𝑖𝑢
⊤
𝑖

)
𝑣 =

𝑛∑︁
𝑖=1

⟨𝑢𝑖, 𝑣⟩𝑢𝑖 =
𝑛∑︁
𝑖=1

𝑟𝑖𝑢𝑖 = 𝑣. (1.7)

We derive that
∑𝑛

𝑖=1 𝑢𝑖𝑢
⊤
𝑖

equals the identity matrix. Notice that this equation remains
true if we replace the 𝑢𝑖 for any arbitrary orthonormal basis of R𝑛. Since the diagonal
entries of 𝐴⊤𝐴 equal 𝑘

𝑛
= 𝑐2 we see that the diagonal entries of

∑𝑛
𝑖=𝑘+1 𝑢𝑖𝑢

⊤
𝑖

equal
1 − 𝑐2. Finally it follows that {𝑤1, . . . , 𝑤𝑘 , 𝑢𝑘+1, . . . , 𝑢𝑛} is as well a basis for R𝑛 and
thus by Equation (1.7) we have

∑𝑘
𝑖=1 𝑤𝑖𝑤

⊤
𝑖
+ ∑𝑛

𝑖=𝑘+1 𝑢𝑖𝑢
⊤
𝑖
= 𝐼𝑛. This shows that every

diagonal entry of the matrix
∑𝑘

𝑖=1 𝑤𝑖𝑤
⊤
𝑖

must equal 𝑐, and hence the matrix 𝐴′ formed
by stacking the vectors 𝑤𝑖 as rows has constant column norm. The conclusion of the
theorem follows from the inequality 𝑍𝑆𝐷S ≤ 𝑍𝐺𝑊 ≤ 𝑍𝑆𝑃S ≤ −𝑛𝜆𝑛. □

Alon and Sudakov proved something similar to the first part of our proof in [7]. In the
paper, the authors prove that 𝑧𝐺𝑊 = 1

2𝑚 − 1
4𝑛𝜆𝑛 under the hypothesis that there exists

a feasible solution 𝑌 = 𝐵⊤𝐵 for the (𝐺𝑊) relaxation such that the columns of 𝐵 are
unitary vectors 𝑣1, . . . , 𝑣𝑛 and its rows 𝑢1, . . . 𝑢𝑘 , 1 ≤ 𝑘 ≤ 𝑛 are eigenvectors of 𝑊
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corresponding to 𝜆𝑛. We conclude this section with the corollary for distance-regular
graphs.

Corollary 1.4. Let 𝐺 be a distance-regular graph. Let S = E(𝑊). Then

𝑧𝑆𝑃S = 𝑧𝐺𝑊 = 𝑧𝑆𝐷S .

Proof. The results follows from the following theorem. It states that the eigenspaces
of distance regular graphs satisfy the hypothesis of Theorem 1.6.

Theorem 1.7 ([27], Theorem 4.1.4). Let 𝐺 be a distance regular graph and 𝜆 an
eigenvalue of 𝐺. Then, there exists a symmetric matrix whose columns span the
eigenspace corresponding to 𝜆 and that have a constant norm.

□

1.4 Applications to semidefinite programs
To verify the applicability of the ideas presented, we consider three families of semidef-
inite optimization problems, each illustrating an aspect of our work. The first problem
considered is the semidefinite relaxation of the maxcut problem which we presented in
Section 1.3. We present our experimental results in Section 1.5.

Maximum Cut
The max cut problem is a prime example of how our methodology can be applied as it
is a hard combinatorial problem that linear programs fail to approximate. We will test
our ideas using two linear programs, already introduced in Section 1.3.

max
𝑋∈S𝑛

1
2
𝑚 + 1

4
⟨−𝑊, 𝑋⟩

s.t: 𝑣⊤𝑋𝑣 ≥ 0 ∀ 𝑣 ∈ S, 𝑋𝑖𝑖 = 1, ∀ 𝑖 ∈ [𝑛], ∥𝑋 ∥∞ ≤ 1.
(𝑆𝑃S)

By the results of Section 1.3, we know that as 𝑛 → +∞, the optimal value of this
program will converge to the optimal value of max cut for Erdős-Rényi graphs and
random 𝑑-regular graphs whenever S contains a basis of eigenvector of the matrix 𝑊 .
We test the quality of the linear relaxation on such graphs, as well as on graphs of the
family G(𝑛, 𝑙, 𝑘) which was introduced in Section 1.3. This family was designed to
have a trivial eigenvalue bound. In Section 1.6 we include as well experiments on the
quality of relaxations on 16 graphs taken from TSPLIB [138] and 14 graphs from the
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network repository [141]. Furthermore, we consider program

1
2
𝑚 + 1

4
max
𝜂∈R𝑘

〈
−𝑊,

𝑘∑︁
𝑖=1

𝜂𝑖𝑥𝑖𝑥
⊤
𝑖

〉
s.t: 𝑑𝑖𝑎𝑔

(
𝑘∑︁
𝑖=1

𝜂𝑖𝑥𝑖𝑥
𝑇
𝑖

)
≤ 1, 𝜂𝑖 ≥ 0, 𝑥𝑖 ∈ S ∀𝑖 ∈ [𝑘], 𝑘 = |S|.

(𝑆𝐷S)

This program is useful as we can obtain graph cuts from its solution using the rounding
procedure of Goemans and Williamson [64]. Since the focus of this chapter is com-
paring the optimal value of the different linear relaxations versus the optimal value of
the SDPs, we defer results on rounded solutions to Section 1.6.

Lovász theta number
The second problem we consider is the Lovász theta number 𝜗(𝐺) introduced by
Lovász in the seminal paper [101] as a convex relaxation for the stability number of a
graph 𝐺. 𝜗 can be computed in polynomial time using a semidefinite program. Since
𝜗(�̄�) -where �̄� is the complement of𝐺- is lower and upper bounded resp. by the clique
number and the chromatic number of 𝐺, it allows one to compute those numbers in
polynomial time for graphs for which these two quantities coincide e.g., perfect graphs.

𝜗(𝐺) can be computed by the following semidefinite optimization program:

max
𝑆∈R𝑛

⟨𝐽, 𝑋⟩

s.t: 𝑡𝑟 (𝑋) = 1, 𝑋𝑖, 𝑗 = 0 ∀(𝑖, 𝑗) ∈ 𝐸,

𝑋 ⪰ 0.

(𝑇𝑛)

This problem is related to our setup, as it is known that the feasible region of the dual
program is polyhedral whenever the considered graph is perfect. This striking results
coincides with the fact that it is precisely for these graphs where the theta number
coincides with the independence number of the graph.

We apply the ideas developed in Section 1.2 on two families of graphs. The first class is
that of regular graphs. Notice that the constraints 𝑋𝑖, 𝑗 = 0 ∀(𝑖, 𝑗) ∈ 𝐸 can be expressed
as

〈
𝑋, 𝐴𝑖 𝑗

〉
= 0 where 𝐴𝑖 𝑗 is matrix of all zeros except it has a 1 in its 𝑖 𝑗 , 𝑗𝑖 entries

whenever 𝐺 contains edge 𝑖 𝑗 . It is clear that if 𝐴 is the adjacency matrix of 𝐺, we have
𝐴 =

∑
𝑖 𝑗 ,∈𝐸 𝐴𝑖 𝑗 . Regular graphs are interesting in our setting as it is easy to check that

whenever 𝐺 is regular graphs, 𝐴 its adjacency matrix, and 𝐽 the matrix of all ones,
we have 𝐽𝐴 = 𝐴𝐽. The second class of graphs we consider are Erdős-Rényi random
graphs, which are typically not regular and it is not obvious how to combine the 𝐴𝑖 𝑗 to
obtain a matrix that commutes with 𝐽. We will use program (CG) to find such matrices.
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Given a finite set S, we obtain the linear relaxation of program (𝑇𝑛):

max
𝑋∈S𝑛

⟨𝐽, 𝑋⟩

s.t: 𝑡𝑟 (𝑋) = 1, 𝑋𝑖, 𝑗 = 0 ∀(𝑖, 𝑗) ∈ 𝐸,

𝑣⊤𝑋𝑣 ≥ 0 ∀ 𝑣 ∈ S

(𝐿𝑇𝑛)

In Section 1.5, we compare the objective value of programs (𝑇𝑛) and (𝐿𝑇𝑛), on Erdős-
Rényi random graphs and 𝑑−regular graphs. Interestingly, this problem is much more
resistant to the the cut generation strategy for solving the corresponding SDP proposed
in Algorithm 1. As we will see, generating cuts through the separation oracle of the
semidefinite cone fails completely on both Erdős-Rényi graphs and 𝑑−regular graphs.
On the contrary, settingS to be the columns of a matrix that simultaneously diagonalizes
𝐽 and 𝐴 -where 𝐴 is the adjacency matrix of 𝐺 in the case of regular graphs or a matrix
given by program (CG) in the case of Erdős-Rényi graphs - performs significantly
better.

In our discussion on the max cut problem we showed that there is a eigenvalue bound
for the max cut value that every graph satisfies, and one might wonder if there such a
bound for the theta number. This is indeed the case, albeit only for regular graphs.

Remark 1.1. Let 𝐺 be a 𝑑 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 graph with 𝑛 vertices. Let 𝑊 be the adjacency
matrix of 𝐺 with largest eigenvalue 𝜆1 and smallest eigenvalue 𝜆𝑛, then the Lovász
theta number 𝜗(𝐺) satisfies

𝜗(𝐺) ≤ −𝑛𝜆𝑛
𝜆1 − 𝜆𝑛

(1.8)

For a proof of this result, see [101]. We conjecture that the objective value of the linear
program (𝐿𝑇𝑛) is also upper bound by −𝑛𝜆𝑛

𝜆1−𝜆𝑛 as this was the case in all the experiments
we performed for 𝑑−regular graphs.

QCQPs
We consider more general SDPs obtained as the Shor relaxation [145] of certain
QCQPs to test the proposed methodology in three different settings, each highlighting
an interesting point. General QCQPs were introduced in Section 1.2, but in this section
and Section 1.5 we will consider a more specialized version of them, following [12],
of the form
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inf
𝑥∈R𝑛

𝑥⊤𝐶𝑥 + 𝑑⊤0 𝑥 + 𝑏0

s.t: 𝑥⊤𝐴𝑖𝑥+𝑑⊤𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖 ∈ [𝑟],
𝐷𝑥 = 𝑡,

𝑙 ≤𝑥 ≤ 𝑢,

(1.9)

where 𝑟 denotes the number of quadratic constraints and is at least 1. 𝐶, 𝐴𝑖, 𝑖 =

{1, . . . , 𝑟} are symmetric matrices, not necessarily PSD, 𝑑𝑖, 𝑖 = {0, . . . 𝑟} are vectors
in R𝑛, 𝐷 is a 𝑞 × 𝑛 real matrix and 𝑡 ∈ R𝑞. 𝑙 and 𝑢 are vectors in R𝑛 and we assume
that −∞ < 𝑙 ≤ 𝑢 < +∞ so that the bounding boxes are non-empty and bounded. If the
bounding boxes are of the form [𝑙, 𝑢]𝑛 we can do a linear change of variables so that
𝑥 ∈ [0, 1]𝑛. Such problems admit the following SDP relaxation:

inf
𝑥∈R𝑛,𝑋∈S𝑛

⟨𝐶, 𝑋⟩ + 𝑑⊤0 𝑥 + 𝑏0

s.t: ⟨𝐴𝑖, 𝑋⟩ + 𝑑⊤𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖 ∈ [𝑟],
𝐷𝑥 = 𝑡,

0 ≤ 𝑥𝑖 ≤ 1 ∀𝑖 ∈ [𝑛],
0 ≤ 𝑋𝑖, 𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ [𝑛],[

𝑋 𝑥

𝑥⊤ 1

]
⪰ 0.

(1.10)

By letting

�̂� :=

[
𝐶 𝑑0

𝑑⊤0 𝑏𝑏

]
, �̂�𝑖 :=

[
𝐴𝑖 𝑏𝑖

𝑏⊤
𝑖

𝑐𝑖

]
, 𝑖 ∈ {1, . . . , 𝑚}, �̂� :=

[
𝑋 𝑥

𝑥⊤ 1

]
and by �̂�𝑛+1 the

𝑛 + 1’th column of �̂� we can write the previous problem in the SDP form

inf
�̂�∈S𝑛+1

〈
�̂�, �̂�

〉
s.t :

〈
�̂�𝑖, �̂�

〉
≤ 0 ∀𝑖 ∈ [𝑟],

𝐷�̂�𝑛+1 = 𝑡,

0 ≤ �̂�𝑖, 𝑗 ≤ 1 ∀𝑖, 𝑗 ∈ [𝑛 + 1],
𝑋𝑛+1,𝑛+1 = 1,

�̂� ⪰ 0.

(𝑄𝑆𝐷𝑃)

In Section 1.5 we test our methodology on random QCQPs using instances generated
as in [12].
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Quadratic knapsack problem
An interesting point arises whenever the quadratic forms determining the objective and
the constraints do not have linear and constant terms, i.e. 𝑑𝑖 = 𝑏𝑖 = 0 ∀𝑖 ∈ {0, . . . , 𝑟}.
In that case, our methodology takes S = {𝑣1, . . . , 𝑣𝑛+1} to be the eigenvectors of a
matrix in S𝑛+1 whose 𝑛 + 1’th row and column are 0. Hence, the constraints 𝑣⊤ �̂�𝑣 ≥ 0
in program 𝑄𝑆𝐷𝑃 essentially ignore the last row and column of �̂� and amount to the
constraints 𝑢⊤

𝑖
𝑋𝑢𝑖 ≥ 0 where 𝑢1, . . . , 𝑢𝑛 are a basis of eigenvectors of an aggregation

of the 𝐴𝑖, 𝑖 ∈ [𝑟] . This is a weaker constraint than what we actually want, which is
𝑢⊤
𝑖
(𝑋 − 𝑥𝑥⊤𝑥) 𝑢𝑖 ≥ 0, 𝑖 ∈ [𝑛].

There are a few approaches we can consider to deal with this issue. For instance, we
could choose to overlook it entirely and proceed by relaxing 𝑄𝑆𝐷𝑃 to an LP, ignoring
that the 𝑑𝑖 are 0. Alternatively, if we have a linear constraint 𝑑⊤

𝑖
𝑥 = 𝛼𝑖, we may set

�̂� =

[
𝐶 𝑑𝑖

𝑑⊤
𝑖

−2𝛼𝑖

]
which shifts the objective by a constant. Finally, and perhaps more

interestingly, we may use the constraints 𝑢⊤
𝑖
(𝑋 − 𝑥𝑥⊤) 𝑢𝑖 ≥ 0, 𝑖 ∈ [𝑛] directly, which

can be equivalently rewritten as:

𝑢⊤𝑖 𝑋𝑢𝑖 ≥ 𝑢⊤𝑖
(
𝑥𝑥⊤

)
𝑢⊤𝑖 = (𝑢⊤𝑖 𝑥)2 ∀𝑖 ∈ [𝑛] . (1.11)

These are second order cone constraints which result in a second order cone relaxation
of program QCQP depending on a set S of vectors 𝑢 in R𝑛. Such a program is both
a relaxation of 𝑄𝑆𝐷𝑃, and a strenghening of the linear relaxation that changes the
constraint �̂� ⪰ 0 for 𝑢⊤𝑋𝑢 ≥ 0 with 𝑢 ∈ S, for any finite set S.

We test these different possibilities in Section 1.5 on instances of the Quadratic Knap-
sack problem [131] which is a QCQP of the form

max
𝑥∈R𝑛

𝑥⊤𝐶𝑥

𝑠.𝑡 :
𝑘∑︁
𝑗=1

𝑤 𝑗𝑥 𝑗 ≤ 𝑐, 𝑥 ∈ {0, 1}𝑛
(QKP)

where 𝑤 ∈ R𝑛, 𝐶 ∈ S𝑛, 𝑐 ∈ R+. It has been noted in the literature that the usual Shor
semidefinite relaxation of this program is not very strong [73, 131] and one may add
certain valid inequalities which result in the following tighter SDP:
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max
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

𝑠.𝑡 :
𝑛∑︁
𝑗=1

𝑤 𝑗𝑋𝑖 𝑗 − 𝑐𝑋𝑖𝑖 ≤ 0 ∀ 𝑖 ∈ [𝑛],

𝑋 − 𝑑𝑖𝑎𝑔(𝑋)𝑑𝑖𝑎𝑔(𝑋)⊤ ⪰ 0.

(QKPSDP)

Using the idea before and a finite set S one may further relax this problem to obtain
the second order cone program

max
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

𝑠.𝑡 :
𝑛∑︁
𝑗=1

𝑤 𝑗𝑋𝑖 𝑗 − 𝑐𝑋𝑖𝑖 ≤ 0 ∀ 𝑖 ∈ [𝑛],

𝑢⊤𝑋𝑢 ≥
(
𝑢⊤𝑑𝑖𝑎𝑔(𝑋)

)2 ∀𝑢 ∈ S.

(QKSSOC)

Extended trust region

In the previous problems it is not obvious how to linearly combine the matrices 𝐴𝑖, 𝑖 ∈
[𝑟], that determine the quadratic forms to form the identity matrix, and hence we
cannot apply Theorem 1.3 directly to arbitrary QCQPs. This motivates us to consider
a variation where the identity matrix is explicitly one of the constraint matrices. This
is the case of the generalized trust region problem [98]. That type of QCQPs consists
in minimizing a quadratic function over the intersection of the unit ball and some
half-spaces:

min
𝑥∈R𝑛

𝑥⊤𝐶𝑥 + 2𝑑⊤𝑥,

s.t: 𝑥⊤𝑥 ≤ 1

𝐷𝑥 ≤ 𝑡

(TR)

with 𝐶 ∈ S𝑛, 𝑑 ∈ R𝑛, 𝐷 ∈ 𝑘 × 𝑛 for some 𝑘 ∈ N and 𝑡 ∈ R𝑘 . Notice that the constraint
𝑥⊤𝑥 ≤ 1 can be written as 𝑥⊤𝐼𝑛 𝑥 ≤ 1. In Section 1.5 we test our methodology
on a slightly more general version of this problem, where we keep some quadratic
constraints. Abusing the language, we still refer to this family of problems as extended
trust region problems.
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1.5 Experimental results
In this section we present experimental results exhibiting the quality of our linear re-
laxations for the semidefinite relaxation of max cut, Lovász’s theta number and on the
SDP relaxations of families of QCQPs described in Section 1.4. For each of these
problems, we will compare the optimal value of the linear relaxations to the optimal
value of the SDP which they respectively relax by means of the quotient of the ob-
jective values. We contrast these quotients to the alternative of using Algorithm 1,
starting with S = 𝑒1, . . . , 𝑒𝑛 and iteratively generating cuts using the SDP separation
oracle. Whenever we fix an semidefinite program with some label 𝑆𝐷𝑃, we denote
by 𝐼𝑡𝑒𝑟𝑘 (𝑆𝐷𝑃) the linear program obtained at the 𝑘 − 𝑡ℎ iteration of Algorithm 1.
For instance, 𝐼𝑡𝑒𝑟0(𝑆𝐷𝑃) is simply dropping the semidefinite constraint of the SDP
instance. We define 𝑧𝑛 as the optimal value of 𝐼𝑡𝑒𝑟𝑛 (𝑆𝐷𝑃). For each family of experi-
ments, where we consider a certain 𝑆𝐷𝑃, we will denote by 𝑧S the objective value of
the corresponding linear relaxation obtained by following the ideas of Section 1.1. 𝑧𝑠𝑑𝑝
will denote the objective value of the SDP instance. Although we consider different
SDPs, there will not be danger of confusion as we caption of the figures and tables
indicate which SDP we are addressing.

All of the code used is available at https://github.com/dderoux/Instance_
specific_relaxations. To solve the resulting optimization programs we have used
Mosek [8]. 3

Max cut
Denote by 𝑧𝑠𝑑𝑝, 𝑧𝑛 and 𝑧S the objective values of programs (GW), 𝐼𝑡𝑒𝑟𝑛 (𝐺𝑊) and
(𝑆𝑃S) with S chosen as in Subsection 1.2. In this particular case, since the(GW)
semidefinite program does not have linear constraints beyond the ones of the diagonal,
the identity 𝐼 is the only constraint matrix and it commutes with the objective matrix𝑊 .
This means that S is simply a eigenbasis for the matrix 𝑊 . As we proved in Theorem
1.5, (𝑆𝑃S) satisfies the eigenvalue bound for max cut. For each 𝑛 ranging from 20 up to
200 in steps of 10, we generate 5 random graphs and plot the maximum, minimum and
median of the quotients 𝑧S

𝑧𝑠𝑑𝑝
. We present our results for Erdős-Rényi random graphs

and 𝑑−regular random graphs in Figures 1.1 and 1.2 respectively.
3The experiments were performed on a 32 GB RAM ThinkPad Lenovo T490s machine running

windows 10 with a Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz 2.11 GHz.
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(a) 𝑝 = 0.5 (b) 𝑝 = 0.9

(c) 𝑝 =
3 log(𝑛)

𝑛

Figure 1.1: Ratio of 𝑧S
𝑧𝑠𝑑𝑝

(Eigen cuts) and 𝑧𝑛
𝑧𝑠𝑑𝑝

(Oracle cuts) for instances of max cut
where the graph has been sampled according to the Erdős-Rényi random model, for
different values of 𝑝, as 𝑛 grows.

Comparison with the Eigenvalue Bound

In Tables 1.1 and 1.2, we compare the performance of 𝑧S and the eigenvalue bound
𝜒(𝐺) := −𝑛𝜆𝑛 (𝐺) on the graphs G(𝑛, 𝑘, 𝑙) which we introduced Section 1.3, for
different values of 𝑛, 𝑘 and 𝑙. Since all of our experiments are random, we present
averaged values over 5 instances, as well as the standard deviations of our results.
Notice that the eigenvalue bound fails to give a small upper bound on the max cut
value for this family of graphs. For the case 𝑛 = 400, the bound fails completely, by
giving a worse bound that the trivial upper bound of 𝑚 for max cut. However, the linear
program succeeds, in all of our experiments, to have a quotient of at most 1.04 within
the optimal value of the Goemans and Williamson relaxation.
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(a) 𝑑 = 5 (b) 𝑑 =
√
𝑛

(c) 𝑑 = 𝑛
10

Figure 1.2: Ratio of 𝑧S
𝑧𝑠𝑑𝑝

(Eigen cuts) and 𝑧𝑛
𝑧𝑠𝑑𝑝

(Oracle cuts) for instances of max cut
where the graph is a random 𝑑−regular graph, for different values of 𝑑, as 𝑛 grows.

Table 1.1: Ratio of 𝜒(𝐺) to 𝑧𝑠𝑑𝑝 and ratio of 𝑧𝑆𝑃S to 𝑧𝑠𝑑𝑝 for 𝑘 = 4 and 𝑙 = 5.

n 𝜒(G)/zsdp: aver-
age(sd)

zS/zsdp: aver-
age(sd)

64 1.241 (0.008) 1.020 (0.002)
100 1.417 (0.007) 1.017 (0.002)
196 1.760 (0.003) 1.012 (0.001)
400 2.289 (0.003) 1.010 (0.001)
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Table 1.2: Ratio of 𝜒(𝐺) to 𝑧𝑠𝑑𝑝 and ratio of 𝑧S to 𝑧𝑠𝑑𝑝 for 𝑘 = 6 and 𝑙 = 10.

n 𝜒(G)/zsdp: aver-
age(sd)

zS/zsdp: aver-
age(sd)

64 1.137 (0.008) 1.029 (0.002)
100 1.278 (0.007) 1.024 (0.001)
196 1.546 (0.005) 1.020 (0.001)
400 1.962 (0.002) 1.013 (0.001)

Lovász theta number
Denote by 𝑧𝑠𝑑𝑝, 𝑧𝑛 and 𝑧S the objective values of programs 𝑇𝑛, 𝐼𝑡𝑒𝑟𝑛 (𝑇𝑛) and 𝐿𝑇𝑛

with S chosen as in Subsection 1.2, respectively. For each 𝑛 ranging from 20 to 200 in
steps of 10, we generate 5 random graphs and plot the maximum, minimum and median
of the quotients 𝑧S

𝑧𝑠𝑑𝑝
and 𝑧𝑛

𝑧𝑠𝑑𝑝
for these five instances. In the following subsections, we

present these plots for Erdős-Rényi and random d-regular graphs.

Erdős-Rényi random graphs

In Figure 1.3 We plot the mentioned quotients for Erdős-Rényi random graph while we
vary 𝑝, the probability of connecting two edges.

d-regular random graphs

In Figure 1.4 we plot the mentioned quotients for 𝑑−regular random graph while we
vary 𝑑.

Quadratically constrained quadratic problems
In this subsection we test the proposed methodology on the different QCQPs introduced
in Section 1.4.

Random QCQPs

We generate random QCQPs following the review [12], where the authors compare
various SDP relaxations of QCQPs in terms of percentage distance to the objective and
solution time. For these instances, the 𝑥 variables are bounded in an unit box [0, 1]𝑛

and the number of variables is varied from 20 up to 100 in steps of 10. The vectors 𝑏, 𝑡
in R𝑟+1 and R𝑞 respectively and the matrices 𝐷 ∈ R𝑞×𝑛 and 𝐶, 𝐴𝑖 ∈ S𝑛, 𝑖 ∈ {1, . . . , 𝑟}
have entries drawn uniformly and independently at random from an uniform distribution
supported in [−1, 1]. The vector 𝑑 ∈ R𝑟+1 has entries sampled uniformly at random
from an uniform distribution supported in [0, 100]. Since QCPQs are highly sensitive
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(a) 𝑝 = 0.5 (b) 𝑝 = 0.9

(c) 𝑝 =
3 log(𝑛)

𝑛

Figure 1.3: Quotients for the Lovász theta number 𝑧S
𝑧𝑠𝑑𝑝

(Eigen cuts) and 𝑧𝑛
𝑧𝑠𝑑𝑝

(Oracle
cuts) as 𝑛 grows for Erdős-Rényi random graphs with different values of 𝑝.

to the number of quadratic constraints, we test different combinations of number of
quadratic and linear constraints, according to the following combinations:

• QCQPs with 𝑟 = 1, 𝑞 = 𝑛
10 .

• QCQPs with 𝑟 = 1, 𝑞 = 𝑛
5 .

• QCQPs with 𝑟 = 𝑛
2 , 𝑞 = 𝑛

10

• QCQPs with 𝑟 = 𝑛, 𝑞 = 𝑛
10 .

Furthermore, we consider different densities Δ for the matrix 𝐶, which corresponds to
the percentage of nonzero elements of the matrix, on average. For a given combination
of these parameters and a value of 𝑛 we generate 5 random instances and solve the
following optimization programs for each:
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(a) 𝑑 = 5 (b) 𝑑 =
√
𝑛

(c) 𝑑 = 𝑛
10

Figure 1.4: Quotients for the Lovász theta number 𝑧S
𝑧𝑠𝑑𝑝

and 𝑧𝑛
𝑧𝑠𝑑𝑝

as 𝑛 grows for random
𝑑−regular graphs with different values of 𝑑, as 𝑛 grows.

• Problem 𝑄𝑆𝐷𝑃. We denote the objective value of this semidefinite program by
𝑧𝑠𝑑𝑝.

• The linear relaxation 𝐿S of 𝑄𝑆𝐷𝑃 where we let S the elements of a eigenvector
basis of the matrix 𝐴0. We denote the objective value of this problem by 𝑧S .

• The LP 𝐼𝑡𝑒𝑟𝑛(𝑄𝑆𝐷𝑃). We denote by 𝑧𝑛 the objective value of this program.

• The LP 𝐼𝑡𝑒𝑟0(𝑄𝑆𝐷𝑃). We denote by 𝑧0 the objective value of this program.

• The second order cone program obtained by dropping the constraint �̂� ⪰ 0 from
𝑄𝑆𝐷𝑃 adding the constraints (1.11) with S the elements of a eigenvector basis
of the matrix 𝐴0. We denote the objective value of this problem by 𝑧𝑠𝑜𝑐.

We average the values of ratios 𝑧S
𝑧𝑠𝑑𝑝

, 𝑧𝑛
𝑧𝑠𝑑𝑝

, 𝑧0
𝑧𝑠𝑑𝑝

and 𝑧𝑠𝑜𝑐
𝑧𝑠𝑑𝑝

over the five instances, and
plot the results in Figures 1.5, 1.6, 1.7 and 1.8. We observe that due to randomness,
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it will not be possible to linearly combine the matrices 𝐴1, . . . , 𝐴𝑚, 𝐴𝑚+1 so that they
commute with the objective matrix 𝐴0. Therefore, program CG will typically return
the 0 matrix, and S will simply be a basis of eigenvectors of 𝐴0.

(a) 𝑟 = 1, 𝑞 = 𝑛
5 (b) 𝑟 = 1, 𝑞 = 𝑛

10

(c) 𝑟 = 𝑛
2 , 𝑞 = 𝑛

10 (d) 𝑟 = 𝑛, 𝑞 = 𝑛
10

Figure 1.5: Quality of the ratios 𝑧S
𝑧𝑠𝑑𝑝

(eigen cuts), 𝑧𝑛
𝑧𝑠𝑑𝑝

, (oracle cuts), 𝑧0
𝑧𝑠𝑑𝑝

(base cuts)
and 𝑧𝑠𝑜𝑐

𝑧𝑠𝑑𝑝
for random QCQP instances with density 0.25.

For these instances, the quality of all the relaxations is encouraging, with the trivial
relaxation obtained by dropping the semidefinite constraint getting a ratio of at most 4
in all of our experiments. The second order cone relaxation is typically the better as
soon as 𝑛 exceeds 50. Whenever the density increases, we notice that the ratios 𝑧S

𝑧𝑠𝑑𝑝

and 𝑧𝑠𝑜𝑐
𝑧𝑠𝑑𝑝

get closer and closer, hinting at that the second order cone relaxation is not
much stronger than the linear relaxation. Although the LP 𝐼𝑡𝑒𝑟𝑛 achieves a better ratio
for small 𝑛, this is no longer true for larger values of 𝑛. In addition, notice that for a
value of 𝑛 this LP requires solving 𝑛 LPs and 𝑛 eigenvector decompositions.
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(a) 𝑟 = 1, 𝑞 = 𝑛
5 (b) 𝑟 = 1, 𝑞 = 𝑛

10

(c) 𝑟 = 𝑛
2 , 𝑞 = 𝑛

10 (d) 𝑟 = 𝑛, 𝑞 = 𝑛
10

Figure 1.6: Quality of the ratios 𝑧S
𝑧𝑠𝑑𝑝

(eigen cuts), 𝑧𝑛
𝑧𝑠𝑑𝑝

, (oracle cuts), 𝑧0
𝑧𝑠𝑑𝑝

(base cuts)
and 𝑧𝑠𝑜𝑐

𝑧𝑠𝑑𝑝
for random QCQP instances with density 0.5.

Extended trust region problems

We now consider instances of the extended trust region problem with extra quadratic
constraints, as presented in Subsection 1.4. These instances are the same as in the
previous subsection, but with the added quadratic constraint 𝑥⊤𝐼𝑛𝑥 ≤ 1. We present
our results in figures 1.9, 1.10, 1.11 and 1.12.

The results for these experiments are similar across the different densities. In all of
our experiments, the second order cone relaxation and the linear relaxation 𝐿S of the
extended trust region problem are very strong with the ratio to the SDP relaxation being
very close to 1. Moreover, this ratio does not get worse as 𝑛 increases, quite in sharp
contrast to the base relaxation 𝐼𝑡𝑒𝑟0 of objective value 𝑧0 and the LP 𝐼𝑡𝑒𝑟𝑛, which
gets a ratio worse than 50 whenever 𝑛 exceeds 100. for these instances, program 𝐿S
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(a) 𝑟 = 1, 𝑞 = 𝑛
5 (b) 𝑟 = 1, 𝑞 = 𝑛

10

(c) 𝑟 = 𝑛
2 , 𝑞 = 𝑛

10 (d) 𝑟 = 𝑛, 𝑞 = 𝑛
10

Figure 1.7: Quality of the ratios 𝑧S
𝑧𝑠𝑑𝑝

(eigen cuts), 𝑧𝑛
𝑧𝑠𝑑𝑝

, (oracle cuts), 𝑧0
𝑧𝑠𝑑𝑝

(base cuts)
and 𝑧𝑠𝑜𝑐

𝑧𝑠𝑑𝑝
for random QCQP instances with density 0.75.

specialized to the extended trust region problem and program QKSSOC certify the dual
bounds provided by Theorem 1.3, which we believe is the reason of the effectiveness
of these relaxations.

Quadratic knapsack problem

We now consider instances of the quadratic knapsack problem as presented in Sub-
section 1.4. In this family of problems, the linear term 𝑑0 in the objective is 0, and
therefore we can consider the different strategies mentioned in Section 1.4. Hence, for
each instance we solve 5 programs, as follows:

• Problem QKPSDP. We denote the objective value of this semidefinite program
by 𝑧𝑠𝑑𝑝.
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(a) 𝑟 = 1, 𝑞 = 𝑛
5 (b) 𝑟 = 1, 𝑞 = 𝑛

10

(c) 𝑟 = 𝑛
2 , 𝑞 = 𝑛

10 (d) 𝑟 = 𝑛, 𝑞 = 𝑛
10

Figure 1.8: Quality of the ratios 𝑧S
𝑧𝑠𝑑𝑝

(eigen cuts), 𝑧𝑛
𝑧𝑠𝑑𝑝

, (oracle cuts), 𝑧0
𝑧𝑠𝑑𝑝

(base cuts)
and 𝑧𝑠𝑜𝑐

𝑧𝑠𝑑𝑝
for random QCQP instances with density 1.

• The linear relaxation 𝐿S of QKPSDP where we letS the elements of a eigenvector
basis of the matrix 𝐴0. We denote the objective value of this problem by 𝑧S .

• The LP 𝐼𝑡𝑒𝑟𝑛(𝑄𝑆𝐷𝑃). We denote by 𝑧𝑛 the objective value of this program.

• The LP 𝐼𝑡𝑒𝑟0(𝑄𝑆𝐷𝑃). We denote by 𝑧0 the objective value of this program.

• The second order cone relaxation of QKPSDP given by program QKSSOC.

The instances were generated following [131], who specify instances that have become
the standard to computationally test this optimization problem. Namely, we first set a
density value Δ ∈ [0, 1], which corresponds to the percentage of nonzero elements of
the matrix 𝐶. Each weight 𝑤 𝑗 , 𝑗 ∈ [𝑛] is uniformly randomly distributed in [1, 50].



48

(a) 𝑟 = 1, 𝑞 = 𝑛
5 (b) 𝑟 = 1, 𝑞 = 𝑛

10

(c) 𝑟 = 𝑛
2 , 𝑞 = 𝑛

10 (d) 𝑟 = 𝑛, 𝑞 = 𝑛
10

Figure 1.9: Quality of the ratios 𝑧S
𝑧𝑠𝑑𝑝

(eigen cuts), 𝑧𝑛
𝑧𝑠𝑑𝑝

, (oracle cuts), 𝑧0
𝑧𝑠𝑑𝑝

(base cuts)
and 𝑧𝑠𝑜𝑐

𝑧𝑠𝑑𝑝
for instances of the extended trust region problem with density 0.25.

The 𝑖 𝑗 entry of 𝐴0 equals the 𝑗𝑖 entry and is nonzero with probability Δ, in which case
it is uniformly distributed in [1, 100], 𝑖, 𝑗 ∈ [𝑛]. The capacity 𝑐 of the knapsack is
taken uniformly at random from the interval [50,

∑𝑛
𝑗=1 𝑤 𝑗 ]. We present our results in

Figure 1.13.

For this family of problems, all relaxations are within reasonable bounds of the SDP
objective value. It is nonetheless appealing that the second order cone relaxation
performs very well, with the ratio to the objective of the SDP nearly 1, regardless of
the value of 𝑛. The relaxation 𝐿S seems to perform similarly to 𝐼𝑡𝑒𝑟𝑛.
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(a) 𝑟 = 1, 𝑞 = 𝑛
5 (b) 𝑟 = 1, 𝑞 = 𝑛

10

(c) 𝑟 = 𝑛
2 , 𝑞 = 𝑛

10 (d) 𝑟 = 𝑛, 𝑞 = 𝑛
10

Figure 1.10: Quality of the ratios 𝑧S
𝑧𝑠𝑑𝑝

(eigen cuts), 𝑧𝑛
𝑧𝑠𝑑𝑝

, (oracle cuts), 𝑧0
𝑧𝑠𝑑𝑝

(base cuts)
and 𝑧𝑠𝑜𝑐

𝑧𝑠𝑑𝑝
for instances of the extended trust region problem with density 0.5.

Computational time considerations
Algorithm 1 offers a meta-algorithm to solve semidefinite programs. Ideally, choosing
appropriate starting sets S to initialize the algorithm will result in better solving times.
It is critical then that solving program 𝐿S or a second order cone strenghening takes
significantly less time than solving the SDP. In what follows, we report solving times
of the different programs proposed.

For the max cut and the Lovász theta number we consider Erdős-Rényi random graphs
on 270 and 200 vertices respectively. The probability of adding an edge between two
vertices is set to 𝑝 = 0.75. We repeat the experiments for 3 instances and report the
average solving time and worst ratio of the LP to the SDP objective value among the
three instances.
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(a) 𝑟 = 1, 𝑞 = 𝑛
5 (b) 𝑟 = 1, 𝑞 = 𝑛

10

(c) 𝑟 = 𝑛
2 , 𝑞 = 𝑛

10 (d) 𝑟 = 𝑛, 𝑞 = 𝑛
10

Figure 1.11: Quality of the ratios 𝑧S
𝑧𝑠𝑑𝑝

(eigen cuts), 𝑧𝑛
𝑧𝑠𝑑𝑝

, (oracle cuts), 𝑧0
𝑧𝑠𝑑𝑝

(base cuts)
and 𝑧𝑠𝑜𝑐

𝑧𝑠𝑑𝑝
for instances of the extended trust region problem with density 0.75.

Max cut : The worst ratio found was 1.08. The average solving time of the SDP was 0.47
seconds. The average solving time of the LP was 9.77 seconds.

Theta number : The worst ratio found was 6.7. The average solving time of the SDP was 2994
seconds. The average solving time of the LP was 39 seconds.

We proceed by reporting the solving times for the quadratic knapsack, random QCQPs
and the Extended Trust Region problem. We consider problems with 270 variables.
For the Trust Region and random QCQPs we set the number of quadratic constraints
to 10, and the number of linear constraints to 20. For each problem, we generate 3
instances as described previously, setting the density Δ to 0.75. We report the average
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(a) 𝑟 = 1, 𝑞 = 𝑛
5 (b) 𝑟 = 1, 𝑞 = 𝑛

10

(c) 𝑟 = 𝑛
2 , 𝑞 = 𝑛

10 (d) 𝑟 = 𝑛, 𝑞 = 𝑛
10

Figure 1.12: Quality of the ratios 𝑧S
𝑧𝑠𝑑𝑝

(eigen cuts), 𝑧𝑛
𝑧𝑠𝑑𝑝

, (oracle cuts), 𝑧0
𝑧𝑠𝑑𝑝

(base cuts)
and 𝑧𝑠𝑜𝑐

𝑧𝑠𝑑𝑝
for instances of the extended trust region problem with density 1.

solving time, worst ratio of the LP to the SDP objective and worst ratio of the SOC to
the SDP value among the three instances.

Trust region : The average solving time of the SDP was 7476 seconds. The average solving
time of the LP was 216 seconds. The average solving time of the SOC was 8.9
seconds. The worst ratio found for the LP was 2.49, and the worst ratio found for
the SOC was 1.17.

Random QCQPs : The average solving time of the SDP was 6510 seconds. The average solving
time of the LP was 13 seconds. The average solving time of the SOC was 21
seconds. The worst ratio found for the LP was 1.49, and the worst ratio found for
the SOC was 1.48.
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(a) Δ = 0.05 (b) Δ = 0.25

(c) Δ = 0.5 (d) Δ = 0.75

(e) Δ = 0.95 (f) Δ = 1

Figure 1.13: Quality of the ratios 𝑧S
𝑧𝑠𝑑𝑝

(eigen cuts), 𝑧𝑛
𝑧𝑠𝑑𝑝

, (oracle cuts), 𝑧0
𝑧𝑠𝑑𝑝

(base
cuts) and 𝑧𝑠𝑜𝑐

𝑧𝑠𝑑𝑝
for instances of the quadratic knapsack problem with density different

densities.
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Knapsack : The average solving time of the SDP was 7422 seconds. The average solving
time of the LP was 15 seconds. The average solving time of the SOC was 20
seconds. The worst ratio found for the LP was 1.844, and the worst ratio found
for the SOC was 1.01.

It is noteworthy that solving the max cut SDP is faster by 4 orders of magnitude than
the all of the other semidefinite programs considered in this section. In addition, it is
quite surprising that the SOC relaxations of the QCQPs have solving times comparable
to that of the LPs. In particular, the solving time of the SOC is two orders of magnitude
faster than the LP for the trust region problems. We point out that very strong, fast and
scalable, specialized algorithms for semidefinite programs such as the max cut problem
and the Lováz theta number exist, such as [63, 156, 158], and therefore alternatives such
as an outer approximation algorithm as 1 might not be appealing for these problems.

1.6 Underlying optimization problems
In Section1.5, we focused on comparing the objective of the semidefinite relaxation to
that of a LP or second order cone relaxation. However, the semidefinite relaxation GW
is the relaxation of combinatorial problem, and hence a natural question is whether the
linear programs proposed give good solutions for the actual underlying problem. As
far as we are aware, there is no algorithm to round the Lovász theta number to obtain
an independent sub-graph in a graph, but we can certainly round solutions of the LPs
for the max cut problem and for a problem which is not combinatorial: the sparse PCA
problem.

In what follows, we present experimental results showing the quality of actual graph
cuts obtained using programs 𝑆𝑃S and 𝑆𝐷S and the subsequent rounding using vectors
for S which we describe in the next subsection. We present as well the ratios

1
2𝑚+ 1

4 𝑍𝑆𝑃S
1
2𝑚+ 1

4 𝑍𝑆𝐷S

and
1
2𝑚+ 1

4 𝑍𝑆𝑃S
1
2𝑚+ 1

4 𝑍𝐺𝑊
which we call LP-gap and optimality gap, respectively.

These experiments are done for for Erdős-Rényi random graphs, 16 graphs taken from
TSPLIB, 14 graphs from the network repository. We compare them with graph cut
values obtained by Mirka and Williamson on the same graph instances 4. For the
Trevisan’s algorithm see [150]. The simple and the sweep algorithms are modifications
of Trevisan’s algorithm presented in [114]. The greedy algorithm for max cut is

4The results included here were obtained by direct communication with the authors, and will be
included in a future version of [114].
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folklore, and the specifics are detailed in the previous reference as well. In the second
subsection, we include results for the sparse PCA problem.

Finding cuts from 𝑆𝐷S

A particular advantage of program 𝑆𝐷S is that its solutions are also feasible for 𝐺𝑊

and hence can be employed using the rounding algorithm in [64] to obtain feasible
cuts, as the next observation shows.

Observation 1.5. Let 𝑋 be feasible for program 𝑆𝐷S where S is finite and con-
tains the standard basis 𝑒1, . . . , 𝑒𝑛 of R𝑛 . Then, we can find a cut of value at least
0.878

(
1
2𝑚 + 1

4 𝑧𝑆𝐷S

)
.

Proof. Notice that since that for 𝑖 in 1, . . . , 𝑛, the matrix 𝑒𝑖 (𝑒𝑖)𝑇 is the matrix of all
zeros with a 1 on its 𝑖𝑖 entry. Further, since𝑊 has 0 on its diagonal we may assume that
any optimal solution to 𝑆𝐷S has all diagonal entries equal to 1. It follows that such a
solution is feasible for the Goemans and Williamson semidefinite program, and hence
we can use the rounding procedure described in [64] to obtain a cut with the claimed
value. □

In our experiments, we will be using different vectors for programs 𝑆𝐷S and 𝑆𝑃S , so
to avoid any confusion we denote by S′ the set of vectors used for the relaxation 𝑆𝐷S′ .
An interesting source of vectors for S′ for program 𝑆𝐷S′ are the eigenvectors of an
optimal solution �̂� to 𝑆𝑃S where S = E(𝑊). Although �̂� is not PSD in general, we
can take the eigenvectors 𝑥𝑖, 𝑖 ∈ [𝑘] that correspond to positive eigenvalues of �̂� , and
let S′ = {𝑥𝑖, . . . , 𝑥𝑘 }. We observe that the computational cost of this procedure comes
from solving the LP (or the SDP), whereas producing a random vector in the unit ball
to find a cut is computationally cheap. Hence we produce 100 random vectors and
report the value of the best cut found using those vectors in all of our experiments. We
note that in [114] the same method is used to find cuts from a solution to GW.

Erdős-Rényi random graphs
Letting S = E(𝑊), we know, thanks to Corollary 1.2 ,that the LP gap and hence
the optimality gap converge to 1 as 𝑛 grows with high probability for Erdős-Rényi
graphs when 𝑛𝑝 is not very small. We empirically evaluate the size of cuts produced
by 𝑆𝐷S and the subsequent rounding and present these results in table 1.3, together
with the results obtained by Mirka and Williamson on the same graphs. Surprisingly,
our procedure generates the best cut value on 15 out of the 20 instances reported in
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Table 1.3: Optimality gap, LP-gap, and other algorithms for Erdős-Rényi random
graphs for the max cut problem.

Graph Optimality gap LP Gap LP cut value Greedy Trevisan Simple sweep GW OPT

𝐺 (50,0.1) 1.076 1.275 114 104 116 112 113 113 116
𝐺 (50,0.25) 1.021 1.119 208 199 210 209 210 199 211
𝐺 (50,0.5) 1.019 1.071 373 357 363 372 373 371 377
𝐺 (50,0.75) 1.014 1.053 522 510 510 510 520 513 524
𝐺 (100,0.1) 1.054 1.213 304 272 284 294 296 301 311
𝐺 (100,0.25) 1.023 1.102 772 732 747 766 766 769 782
𝐺 (100,0.5) 1.013 1.048 1394 1350 1356 1391 1391 1375 1416
𝐺 (100,0.75) 1.006 1.032 2025 1978 2008 2014 2019 1982 2035
𝐺 (200,0.1) 1.031 1.151 1275 1204 1242 1257 1257 1267 1296
𝐺 (200,0.25) 1.015 1.074 2926 2796 2892 2920 2922 2861 2975
𝐺 (200,0.5) 1.007 1.031 5473 5388 5397 5441 5451 5489 5542
𝐺 (200,0.75) 1.005 1.025 7860 7731 7743 7848 7852 7835 7904
𝐺 (350,0.1) 1.018 1.105 3645 3542 3548 3661 3667 3513 3735
𝐺 (350,0.25) 1.009 1.050 8613 8344 8426 8535 8553 8349 8709
𝐺 (350,0.5) 1.006 1.027 16327 16110 16225 16253 16298 15904 16482
𝐺 (350,0.75) 1.003 1.017 23818 23613 23678 23791 23811 23674 23967
𝐺 (500,0.1) 1.0143 1.087 7326 7174 7174 7314 7314 7372 7532
𝐺 (500,0.25) 1.007 1.040 17177 16833 17014 17045 17075 16766 17399
𝐺 (500,0.5) 1.004 1.022 32978 32557 32862 32952 32960 32713 33234
𝐺 (500,0.75) 1.003 1.014 48326 47995 47995 48244 48255 47597 48576

[114]. Furthermore, we obtain cuts better than the ones produced by the Goemans and
Williamson rounding procedure -which first solves a semidefinite program- on 18 out
of the 20 instances. Our results are reported in Table 1.3.

Relevant instances
We test our algorithm on 16 complete graphs from TSPLIB [138], an online library
of sample instances for the Travelling Salesman Problem and related graph problems.
These graph are complete weighted graphs and hence we do not report the number
of edges of each graph. In Table 1.4 we present the optimality gap and the LP gap
found for these graphs. We report as well the size of the cuts obtained following the
cut generation technique presented in 1.6. Our algorithm finds the best cut in 7 of
16 instances, and a better (or equal) cut than the GW relaxation on 14 out of the 16
instances. We then present the same quotients on 14 graph instances taken from the
Network Repository [141] in Table 1.5. Since of these graphs are weighted and some
are not, we do not report the number of edges of each graph. Our algorithm finds the
best cut in 8 of the 14 instances, and a better (or equal) cut than the GW relaxation on
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10 out of the 14 instances.

Sparse PCA
Principal component analysis (PCA) is a popular tool in the statistical and machine
learning literature used for dimensionality reduction, data visualisation and analysis.
The core idea is to find linear combinations of the variables that correspond to di-
rections of maximal variance, called the principal components. Finding these can be
accomplished by means of a singular value decomposition. For more details about
applications we refer the reader to [1]. One of the main disadvantages of PCA is that
the weights in the linear combination of the variables are typically non-zero, thus hin-
dering interpretation and applicability to certain problems, such as biology or finance.
In these cases it is desirable to have components that are linear combination of just
a few variables. Such components are called sparse components, and many different
techniques have been proposed to obtain them. Cadima and Jolliffe [30] propose an
ad-hoc technique consisting in setting to 0 loadings that are small enough. Zou, Hastie,
and Tibshirani [164] write the PCA problem as a regression optimization problem,
and then impose an ℓ1 penalization term to encourage sparse solutions. Following the
ideas of the previous section, we relax by dropping the constraint 𝑋 ⪰ 0 and imposing
𝑣⊤𝑋𝑣 ≥ 0 for all 𝑣 ∈ S where we set S = E(𝐶). This yields the linear program

max
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

s.t: 𝑡𝑟 (𝑋) = 1, ®1⊤ |𝑋 |®1 ≤ 𝑘,

𝑣⊤𝑋𝑣 ≥ 0 ∀𝑣 ∈ S
𝑋𝑖𝑖 ≥ 0, 𝑋𝑖𝑖 + 𝑋 𝑗 𝑗 − 2𝛼𝑋𝑖 𝑗 ≥ 0 ∀ 𝑖, 𝑗 ∈ [𝑛]

−1 ≥ 𝑋𝑖 𝑗 ≥ 1, ∀𝑖, 𝑗 ∈ [𝑛] .

(𝐿𝑆𝑃𝐶𝐴)

The linear constraints on 𝑋 added on the last two lines are valid for 𝑋 positive semidefi-
nite since the cone of positive semidefinite matrices is self dual, as long as 𝛼 ∈ [0,

√
2].

We mention that these constraints are suggested in [157].

We test the quality of our relaxation in terms of sparsity of the recovered components in
the examples presented in [41] and in terms of explained variance. Explained variance
is the typical way to evaluate the performance of a PCA decomposition. However,
we point out that there does not seem to be a consensus in the literature for what the
"explained variance" for a sparse PCA decomposition is. The reason, in a nutshell,
is that components recovered in the sparse case are not mutually orthogonal [31]. In
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this paper, the author propose a set of corrected formulas for the the sparse pca which
reduce to the usual explained variance formula when the PCs are orthogonal.

Synthetic experiments and Pit props data set
To evaluate the recovery of sparse principal components with their semidefinite relax-
ation, [41] use their program on a synthetic data set and on the Pit pros data set. In this
subsection, we compare our linear relaxation 𝐿𝑆𝑃𝐶𝐴 to their semidefinite program
by checking the sparse components that both methods produce. D’Aspermont et al.
[41] generate a synthetic matrix 𝐶 with sparse components and empirically check that
their proposed SDP can indeed recover the components. We repeat this experiment
and show that the linear relaxation 𝐿𝑆𝑃𝐶𝐴 obtained by setting S = E(𝐶) recovers as
well the components. We show the results in Table 1.6. In the artificial example, three
hidden factors are created:

𝑉1 ∼ N(0, 290), 𝑉2 ∼ N(0, 300), 𝑉3 = −0.3𝑉1 + 0.925𝑉2 + 𝜀, 𝜀 ∼ N(0, 300)

with 𝑉1, 𝑉2 and 𝜀 independent. Then, 10 observed variables are generated as follows:

𝑋𝑖 = 𝑉 𝑗 + 𝜀
𝑗

𝑖
, 𝜀

𝑗

𝑖
∼ N(0, 1),

with 𝑗 = 1 for 𝑖 = 1, 2, 3, 4, 𝑗 = 2 for 𝑖 = 5, 6, 7, 8 and 𝑗 = 3 for 𝑖 = 9, 10 and {𝜀 𝑗

𝑖
}

independent for all 𝑖 ∈ [10] and 𝑗 ∈ [3]. To recover the sparse components, a solution
𝑋1 for program 𝐿𝑆𝑃𝐶𝐴 is found and truncated to keep only the dominant -sparse-
eigenvector 𝑥1. Then, the covariance matrix 𝐶 is deflated to obtain

𝐶2 = 𝐶 − (𝑥⊤1 𝐶𝑥1)𝑥1𝑥
⊤
1

and iterated to obtain further components. As mentioned in [41], the ideal solution is
to use (𝑋1, 𝑋2, 𝑋3, 𝑋4) for the first principal component to recover factor 𝑉1 and only
(𝑋5, 𝑋6, 𝑋7, 𝑋8) for the second component to recover 𝑉2. We replicate the results of
Table 1 in [41] using the true covariance matrix 𝐶 and the oracle knowledge that the
sparcity 𝑘 = 4. We then run our linear relaxation by setting S = E(𝐶). We report the
results in Table 1.6. Observe that the components that our linear relaxation are sparse,
and have the same support that the ones found by the SDP and are very close in norm
(ignoring the signs, which are irrelevant to this application).
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Table 1.6: Loadings for the first two principal components on the synthetic data set
with 𝑘 = 4 for both PCs.

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8 𝑋9 𝑋10
SPCA PC1 0 0 0 0 0.5 0.5 0.5 0.5 0 0
SPCA PC2 0.5 0.5 0.5 0.5 0 0 0 0 0 0

LSPCA PC1 0 0 0 0 −0.598 −0.596 −0.457 −0.28 0 0
LSPCA PC2 0.482 0.366 0.762 0.226 0 0 0 0 0 0

Pit props dataset

We next consider the Pit pros dataset, introduced in [82]. This dataset consists of
180 observations of 13 measured variables. It is a regularly used dataset in the PCA
literature, and is notorious for having hard- to-interpret principal components. We
replicate the results of Table 2 in [41], where they present two sets of experiments.
First, they set 𝑘 = 5 for the first component and then 𝑘 = 2 for components 2 and 3. In
the second set of experiments, they set 𝑘 = 6 for the first component and then 𝑘 = 2
for components 2 and 3. For our linear relaxation, We let S = E(𝐶) and use the same
values of 𝑘 . We report the results in Table 1.7 for 𝑘 = 5, 2, 2. These two tables show
that our methods does recover sparse components.

Variance explained

In this subsection we evaluate the quality of our linear relaxation in terms of the
variance explained by the recovered principal components, which is the typical metric
to evaluate the quality of principal components. To compute the explained variance,
we use the "The fraction of total variance computed" as defined in [31], which is a
corrected formula for explained variance when the components are not orthogonal. We
compute this value for both the SDP relaxation and our LP relaxation for 40 data sets
contained in the Rdataset repository, which contains the data sets preinstalled in the
core of 𝑅 as well of some of the data sets contained in some of the most popular 𝑅

libraries. We use only data sets which contain between 8 and 20 continuous variables.
For each data set, we compute 4 sparse components. We define 𝑒𝑣(𝑆𝐷𝑃) to be the
largest explained variance by sparse components found by the SDP method by varying
the target sparsity 𝑘 ranging from 1 to 30% of the number of variables in the data set.
We define 𝑒𝑣(𝐿𝑃) similarly but this time using the linear relaxation. We point out
that the number 𝑘 for which these maximal values are obtained need not be the same.
We present our results in figure 1.14. Each point corresponds to the relative error (in
percentages) between the explained variances for the two methods, computed as
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Figure 1.14: Relative error in percentages between the explained variances for the two
SDP method and the LP method to recover sparse components.

100 · 𝑒𝑣(𝑆𝐷𝑃) − 𝑒𝑣(𝐿𝑃)
𝑒𝑣(𝑆𝐷𝑃) .

We note that among the 40 data sets used, only 1 has an error larger than 15%, all but
6 have an error larger than 10% and more than half (23 out of 40) have an error of less
than 5%.

1.7 Summary and future work
In this work, we introduced a generic technique to obtain linear and second order
cone relaxations of semidefinite programs with provable guarantees based on the com-
mutativity of the constraints and objective matrices. We believe that other algebraic
properties of these matrices can be exploited to obtain further stronger relaxations. Al-
though we believe solving semidefinite programs with linear programs is an interesting
topic is its own right, we posit that our ideas can be exploited in settings where linear
approximations of convex regions is an essential component of state-of-the-art algo-
rithms, such as in copositive programming [29] and outer approximation algorithms
for semidefinite integer programs [102].

On the theoretical side, the main remaining question regarding the max cut problem is
if the proposed linear program 𝑆𝑃S provides a better-than-2 approximation algorithm.
From our computational tests, we are not aware of any instance where the approximation
factor is worse than 1.8.
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For the Lovász theta number, the main theoretical question is if our proposed linear
program satisfies the same inequalities that 𝜗(�̄�) does. Namely,

𝛼(𝐺) ≤ 𝜗(�̄�) ≤ 𝜒(𝐺)

where 𝛼(𝐺) and 𝜒(𝐺) are the clique and chromatic numbers of 𝐺, respectively.
It would be interesting as well to find out if program 𝑇𝑛 satisfies the bound (1.8)
for 𝑑−regular graphs. Finally, the second order cone relaxations for the knapsack
and extended trust region problems performed well in terms of both solving time and
objective value. It would be then worthwhile to explore the specialization of Algorithm
1 to these problems, and to compare its behaviour to state of the art algorithms for those
problems.
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C h a p t e r 2

SPECTRAL OUTER APPROXIMATION ALGORITHMS FOR
BINARY SEMIDEFINITE PROBLEMS

2.1 Introduction
In recent years, integer semidefinite optimization has received wide interest from the
optimization community. These problems are appealing as they allow the formulation
of many mixed integer non-linear problems due to the high expressive power of the
semidefinite cone, in particular being able to capture non-differentiable functions. In
addition, it allows the design of algorithms based on conic convex optimization, such
as Branch-and-Bound approaches which in turn benefit from the advances in stable
interior-point algorithms. This contrasts the fact that global solvers for mixed-integer
non-linear problems are often unstable and are not very well suited for non-differentiable
functions [48].

Even in the presence of these benefits, applications of integer semidefinite programming
seem to be quite sparse in the literature. 1 Some examples of mixed-integer semidefinite
optimization problems appear in truss topology optimization [62], sparse principal
component analysis [97] and the computation of restricted isometry constants [61].

Very recently, exploiting results on positive semidefinite matrices with entries in
{0,−1, 1}, de Meĳer and Sotirov showed in [110] that binary, quadratically constrained
quadratic problem can be reformulated as binary semidefinite programs (BSDPs). The
former are problems of the form

min
𝑥

𝑥⊤𝐶𝑥 + 2𝑑⊤0 𝑥

s.t: 𝑥⊤𝐴𝑖𝑥 + 2𝑑⊤𝑖 𝑥 ≤ 𝑏𝑖, ∀𝑖 ∈ [𝑟],
𝐷𝑥 = 𝑡,

𝑥 ∈ {0, 1}𝑛,

(BQCQP)

with 𝐶, 𝐴𝑖 ∈ S𝑛 for 𝑖 ∈ {1, . . . 𝑟}, 𝐷 ∈ R𝑞×𝑛, 𝑞 ∈ N, 𝑑𝑖 ∈ R𝑛 for 𝑖 ∈ {0, . . . 𝑟} for some
𝑟 ∈ N and 𝑡 ∈ R𝑞.

1 As a matter of fact, SDPs appeared historically as relaxations of a quadratic problem (some with
binary constraints) through Shor’s relaxation, and therefore imposing integer constraints on them is, at
the very least, unexpected.
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Binary QCQPs are a central class of optimization programs and substantial efforts have
been dedicated to understand them theoretically and solve them in practice. Their rel-
evance comes from the fact that they capture a wide array of problems. As mentioned
in the introduction, they are able to express problems from many different fields, such
as combinatorial optimization and computer science [23, 48, 52, 100, 131], machine
learning [57, 107, 127], chemical engineering [21] and the references therein and
portfolio optimization [22, 43, 139], among others. Unconstrained binary quadratic
problems [14, 112, 134] are a subset of Binary QCQPs that have been extensively
studied, in particular from the quantum optimization community [47, 53, 68, 83, 109],
mainly due to the development of quantum/quantum-inspired methods to solve them
[28].

The results of [110] are motivating as they open a new avenue to solve binary QCQPs to
global optimality, a task that remains challenging even for state-of-the-art algorithms.
In fact, solving problems of the form BQCQP is NP-hard [130], and they are even hard
to approximate. For illustration, the problem of finding the largest independent set in
a given graph 𝐺 on 𝑛 vertices can be cast as a binary QCQP, but the stable set number
in an 𝑛−node graph is NP-hard to compute and even hard to approximate within 𝑛1−𝜀

for any 𝜀 > 0 [70].

Different approaches have been proposed to solve BQCQPs to global optimality. These
algorithms usually rely on the Branch-and-bound framework. See [10, 25, 95, 118].
Relevant variants are Branch-and-cut methods that incorporate cutting planes [85] that
tighten the problems arising from branching [116, 126]. A different family of exact
algorithms that do not rely on the branch-and-bound framework are outer approximation
algorithms, first introduced by Duran and Grossmann [49] and Leyffer [56, 96].

Many off-the-shelf solvers exist to solve different variants of QCQP problems. BARON
[143], GloMIQO [115], Ipopt [154], Couenne [81] provide global methods for mixed-
integer QCQPs. On the other hand, Gurobi [125], SCIP [2], CPLEX [81], Mosek [8]
provide algorithms to solve mixed-integer quadratic problems, with some support for
non-convex quadratic constraints. We point out that all of these algorithms take time
exponential in the size of the optimization problem in the worst case, and unfortunately,
they typically exhibit this behavior in practice.

It is not clear, however, if formulating the BQCQPs as binary SDPs and solving
them with specialized algorithms for the latter is a viable alternative. In fact, earlier
experiments show that the current available solvers for BSDPs are only capable of
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solving instances of BQCQP of very limited sizes in reasonable time. We are aware
of 7 such algorithms. SCIP-SDP [62] uses a branch-and-bound strategy where strict
duality of the semidefinite relaxations is inherited to the subproblems. Kobayashi
and Takano [87] propose a cutting plane and branch and cut algorithm for generic
mixed-integer semidefinite programs. This approach is refined in [111] where Chvatal-
Gomory cuts are considered. A very similar algorithm to their cutting plane approach
called CUTSDP is implemented in YALMIP [90, 99]. GravitySDP can solve integer
SDPS while exploiting sparsity [75]. Finally, in [103], Lubin et al. propose an outer
approximation algorithm based on the ideas of Duran and Grossmann [49] and Leyffer
[56, 96], to solve mixed integer, conic optimization programs, which therefore can be
specialized to mixed integer semidefinite optimization. The resulting implementation
in Julia is called Pajarito. This algorithm is extended in [38] to a Branch-and-Bound
Outer Approximation approach.

These considerations suggest the need to implement algorithms that exploit the specific
structure of the integer semidefinite formulation of BQCQP. In this chapter, we exploit
this special structure to propose a second order, spectral outer approximation algorithm
to solve binary semidefinite programs that are exact formulations of binary QCQPs.
To the best of our knowledge, this approach has yet to be tested and compared to the
alternatives available to solve binary integer semidefinite programs.

Overview and outline
Our starting point are the results of de Meĳer and Sotirov, who showed in [110] that
binary QCQPs can be reformulated as binary semidefinite programs. Formally:

Theorem 2.1 (Theorem 9 of [110]). Let 𝐶, 𝐴𝑖 ∈ S𝑛, 𝑑0, 𝑑𝑖 ∈ R𝑛, 𝑏𝑖 ∈ R, ∀𝑖 ∈ [𝑟]
and 𝐷 ∈ R𝑞×𝑛, 𝑡𝑖 ∈ R,∀ 𝑖 ∈ [𝑞], where 𝑟, 𝑞 ∈ N. The following semidefinite, binary
program is equivalent to BQCQP.

min
𝑋,𝑥

⟨𝐶, 𝑋⟩ + 2𝑑⊤0 𝑥

s.t: ⟨𝐴𝑖, 𝑋⟩ + 𝑑⊤𝑖 𝑥 ≤ 𝑏𝑖 𝑖 ∈ [𝑟],
𝐷𝑥 = 𝑡,

𝑋 − 𝑥𝑥⊤ ⪰ 0,

𝐷𝑖𝑎𝑔(𝑋) = 𝑥, 𝑥 ∈ {0, 1}𝑛.

(BSDP)

The constraint 𝑋 −𝑥𝑥⊤ ⪰ 0 is usually written as the equivalent constraint

[
𝑋 𝑥⊤

𝑥 1

]
⪰
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0. Our main idea is to use an outer approximation approach to tackle this formulation.
This family of algorithms work by iteratively approximating the semidefinite feasible
region with polyhedrons and solving the resulting integer linear problems. Now,
the performance of these algorithms depends crucially on the quality of the outer
approximation. We propose to approximate the region defined by 𝑋 − 𝑥𝑥⊤ ⪰ 0 by
using a set of vectors 𝑣1, . . . , 𝑣𝑛 where 𝑛 ∈ N by the region defined by the second
order cone constraints 𝑣⊤1 (𝑋 − 𝑥𝑥⊤)𝑣1 ≥ 0, . . . , 𝑣⊤𝑛 (𝑋 − 𝑥𝑥⊤)𝑣𝑛 ≥ 0. By drawing
inspiration from the ideas of Chapter 1, we propose to carefully select the vectors
𝑣 as the columns of a matrix that simultaneously diagonalizes the matrix 𝐶 and an
aggregation of matrices 𝐴𝑖, 𝑖 ∈ [𝑟] from the BSDP problem. The rest of this chapter is
organized as follows.

(a) In Section 2.2, we present the outer approximation algorithm for mixed-integer
conic programs of [103] specialized to mixed integer semidefinite programs.

(b) In Section 2.3, we develop two spectral outer approximation algorithms for
integer, semidefinite programs based on a second-order approximation of the
semidefinite program’s feasible region, which explicitly uses information from
the objective and constraints matrices.

(c) In Section 2.4 we introduce the binary, cardinality constrained least squares
problem and its formulation as a binary SDP. We then present the Quadratic
knapsack problem and its formulation as a binary SDP.

(d) In Section 2.5, we briefly describe available algorithms to solve binary semidef-
inite optimization problems and compare them to the proposed algorithms in
Section 2.3.

(e) In Section 2.6 we conclude with some remarks.

2.2 Outer approximation algorithms for Integer semidefinite problems
In this section, we introduce an outer approximation algorithm for integer semidefinite
optimization. This algorithm is introduced in the more general setting of mixed-integer
conic optimization [103] by Lubin et al.

We begin by introducing integer semidefinite programs. Such a problem is of the form



68

min
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

s.t: ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑟],
𝑋 ⪰ 0

𝑢𝑖 𝑗 ≤ 𝑋𝑖 𝑗 ≤ 𝑙𝑖 𝑗 , 𝑋𝑖 𝑗 ∈ Z, (𝑖, 𝑗) ∈ 𝐿 ⊆ [𝑛] × [𝑛],

(ISDP)

with 𝐶, 𝐴𝑖 ∈ S𝑛, 𝑏𝑖 ∈ R for all 𝑖 ∈ [𝑟]. 𝐿 ⊆ [𝑛] × [𝑛] indicates the entries of 𝑋 which
are constrained to be integer, and 𝑢𝑖 𝑗 , 𝑙𝑖 𝑗 upper and lower bounds of 𝑋𝑖 𝑗 for (𝑖, 𝑗) ∈ 𝐿.
Notice that if we ignore the integrality constraints, the set of feasible solutions is
convex and given by the equations 𝑋 ⪰ 0, ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑟]. A polyhedral outer
approximation of the set of positive semidefinite matrices S𝑛 is defined as follows.

Definition 2.1. A polyhedron 𝑃 is an outer approximation of S𝑛 if 𝑃 equals the inter-
section of a finite number of half-spaces and contains S𝑛.

Outer approximations of the semidefinite cone are obtained by fixing a finite set of
positive semidefinite matrices since S𝑛+ is self-dual. That is, a polyhedral set 𝑃 =

{𝑋 ∈ S𝑛 : ⟨𝑇𝑖, 𝑋⟩ ≥ 0, 𝑖 ∈ [𝑞]}, where 𝑇1, . . . , 𝑇𝑞 ∈ S𝑛+ is an outer approximation
of {𝑋 ∈ S𝑛 : 𝑋 ⪰ 0}. Because we will need to keep track of the matrices 𝑇𝑖, we set
T := {𝑇1, . . . , 𝑇𝑞} and let

𝑃T := {𝑋 ∈ S𝑛 : ⟨𝑇, 𝑋⟩ ≥ 0 ∀ 𝑇 ∈ T }.

Consider a problem of the form of ISDP. Let 𝑃T be a polyhedral outer approximation
of S𝑛+. Then, the problem

min
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

s.t: ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑟],
𝑋 ∈ 𝑃T ,

𝑠𝑖 𝑗 ≤ 𝑋𝑖 𝑗 ≤ 𝑙𝑖 𝑗 , 𝑋𝑖 𝑗 ∈ Z, (𝑖, 𝑗) ∈ 𝐿 ⊆ [𝑛] × [𝑛] .

(𝑂𝐴𝑆𝐷𝑃(𝑃T ))

is called the linear outer approximation problem of ISDP. Notice that this problem
is a mixed-integer linear problem. Since any feasible solution to ISDP is feasible to
𝑂𝐴𝑆𝐷𝑃(𝑃T ) as well, this latter problem is a relaxation of the former, and the optimal
value of 𝑂𝐴𝑆𝐷𝑃(𝑃T ) provides a lower bound to ISDP.

Notice that if we fix the entries of 𝑋 to have a specific integer value in program ISDP,
the program reduces to a semidefinite optimization problem. More formally, Let 𝑋𝐿
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be a matrix with 𝑋𝐿
𝑖 𝑗
∈ Z and 𝑢𝑖 𝑗 ≤ 𝑋𝐿

𝑖 𝑗
≤ 𝑙𝑖 𝑗 for all (𝑖, 𝑗) ∈ 𝐿 ⊆ [𝑛] × [𝑛]. Consider

the following optimization program

min
𝑋∈S𝑛

⟨𝐶, 𝑋⟩

s.t: ⟨𝐴𝑖, 𝑋⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑟],
𝑋 ⪰ 0

𝑋𝑖 𝑗 = 𝑋𝐿
𝑖 𝑗 ∀(𝑖, 𝑗) ∈ 𝐿.

(𝑆𝐷𝑃(𝑋𝐿))

Since we have fixed the integer coordinates to take a specific value, this program is a
(convex) positive semidefinite optimization problem. Furthermore, if 𝑋′ is an optimal
solution to this problem, it is feasible for 𝐼𝑆𝐷𝑃, and therefore provides a corresponding
upper bound.

In summary, the outer approximation algorithm for ISDP first computes an optimal
solution �̂� to 𝑂𝐴𝑆𝐷𝑃(𝑃T ). This solution necessarily has integer values in the entries
specified by 𝐿, and the algorithm proceeds to solve problem 𝑆𝐷𝑃( �̂�). That is, problem
𝑆𝐷𝑃(𝑋𝐿) where the entries in 𝐿 match the entries of �̂� in 𝐿. If all problems are solvable
and 𝑋∗ denotes an optimal solution of ISDP then the following key inequalities hold

〈
𝐶, �̂�

〉
≤ ⟨𝐶, 𝑋∗⟩ ≤ ⟨𝐶, 𝑋′⟩ .

If the values
〈
𝐶, �̂�

〉
and ⟨𝐶, 𝑋′⟩ are equal, then 𝑋′ is optimal for ISDP and the algorithm

terminates. If not, the algorithm proceeds by updating the outer approximation 𝑃T to
a tighter approximation by the addition of valid linear constraints, and 𝑂𝐴𝑆𝐷𝑃(𝑃T )
is re-solved. This process yields a non-decreasing sequence of lower bounds.

We now formally state the linear outer approximation algorithm.

Algorithm 2 OA(SDP)
1: Fix a tolerance 𝜀 > 0. Set T = {(𝑒𝑖 ± 𝑒 𝑗 ) (𝑒𝑖 ± 𝑒 𝑗 )⊤ : 𝑖, 𝑗 ∈ [𝑛]}.
2: Solve problem OASDP(𝑃T ) finding a minimizer �̂� .
3: Solve problem 𝑆𝐷𝑃( �̂�), finding a minimizer 𝑋′.
4: if

��⟨𝐶, 𝑋′⟩ −
〈
𝐶, �̂�

〉�� > 𝜀 then
5: Find a dual optimal dual solution 𝑆′ of program 𝐷𝑆𝐷𝑃( �̂�).
6: Set T = T ∪ {𝑆′}. Go to step 2.
7: end if
8: return 𝑋′.

Notice that since the number of possible integer assignments for the coordinates in 𝐿

are finite, this algorithm is guaranteed to terminate in a finite number of steps if there
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is no repetition of assignments of the integer variables. In what follows, we prove a
lemma that guarantees finite convergence of the algorithm. To state this result, we need
first to specify the dual of problem 𝑆𝐷𝑃(𝑋𝐿).

Observation 2.1. The dual of problem 𝑆𝐷𝑃(𝑋𝐿) is given by

max
𝛾∈S𝑛,𝑆∈S𝑛+ ,𝑦∈R𝑛

𝑏⊤𝑦 +
〈
𝛾, 𝑋𝐿

〉
𝑠.𝑡 : 𝛾𝑖, 𝑗 = 0 ∀(𝑖, 𝑗) ∈ [𝑛] × [𝑛] \ 𝐼

𝐶 −
𝑟∑︁
𝑖=1

𝐴𝑖𝑦𝑖 − 𝛾 = 𝑆

𝑆 ⪰ 0.

(𝐷𝑆𝐷𝑃(𝑋𝐿))

The key to obtain appropriate hyperplanes to update the set 𝑃T that imply the conver-
gence of the algorithm in finite time is conic duality.

Lemma 2.1. Let 𝑋𝐿 be fixed and denote by 𝑍𝑋𝐿 the optimal value of program
(𝑆𝐷𝑃(𝑋𝐿)) with corresponding minimizer 𝑋′. Suppose that strong duality holds
between the pair of problems 𝐷𝑆𝐷𝑃(𝑋𝐿) and 𝑆𝐷𝑃(𝑋𝐿). Let 𝑆′ be optimal for the
latter program. Set T = {𝑆′} so that

𝑃T = {𝑋 ∈ S𝑛 : ⟨𝑋, 𝑆′⟩ ≥ 0}.

Let �̂� be such that ⟨𝐴𝑖, �̂�⟩ = 𝑏𝑖 ∀𝑖 ∈ [𝑚], ⟨�̂�, 𝑆′⟩ ≥ 0 and such that �̂�𝑖 𝑗 = 𝑋𝐿
𝑖 𝑗

for all (𝑖, 𝑗) ∈ 𝐿 . Then, ⟨𝐶, �̂�⟩ ≥ 𝑍𝑋𝐿 . In addition, if �̂� is optimal for program
𝑂𝐴𝑆𝐷𝑃(𝑃T ) - or in other words, if the outer approximation 𝑂𝐴𝑆𝐷𝑃(𝑃T ) returns a
matrix with integer part equal to 𝑋𝐿-, then 𝑋′ is global optimal for ISDP and the outer
approximation algorithm terminates.

Proof. First observe that
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0 ≤ ⟨�̂�, 𝑆′⟩ = ⟨�̂�, 𝐶 −
𝑟∑︁
𝑖=1

𝐴𝑖𝑦𝑖 − 𝛾⟩

= ⟨�̂�, 𝐶⟩ − ⟨�̂�,
𝑟∑︁
𝑖=1

𝐴𝑖𝑦𝑖 − 𝛾⟩

= ⟨�̂�, 𝐶⟩ −
𝑟∑︁
𝑖=1

𝑦𝑖 ⟨�̂�, 𝐴𝑖⟩ − ⟨�̂�, 𝛾⟩

= ⟨�̂�, 𝐶⟩ −
𝑟∑︁
𝑖=1

𝑦𝑖𝑏𝑖 − ⟨�̂�, 𝛾⟩

= ⟨�̂�, 𝐶⟩ −
𝑟∑︁
𝑖=1

𝑦𝑖𝑏𝑖 − ⟨𝑋𝐿 , 𝛾⟩ = ⟨�̂�, 𝐶⟩ − 𝑍𝑋𝐿 .

The last equation is valid because 𝛾 is zero for the (𝑖, 𝑗) entries not in 𝐿, and because
�̂� matches 𝑋𝐿 in those entries. Hence, we derive ⟨𝐶, �̂�⟩ ≥ 𝑍𝑋𝐿 .

To conclude, let 𝑂𝑃𝑇 denotes the optimal value of ISDP. Observe that since program
𝑂𝐴𝑆𝐷𝑃(𝑃T ) is a relaxation of ISDP we have ⟨𝐶, �̂�⟩ ≤ 𝑂𝑃𝑇 . Now, 𝑍𝑋𝐿 is the optimal
value of program 𝑆𝐷𝑃(𝑋𝐿) whose optimizer is feasible to program ISDP so that we
have 𝑂𝑃𝑇 ≤ 𝑍𝑋𝐿 . All in all we get the inequalities

⟨𝐶, �̂�⟩ ≤ 𝑂𝑃𝑇 ≤ 𝑍𝑋𝐿 ≤ ⟨𝐶, �̂�⟩.

Hence, we get that 𝑍𝑋𝐿 = 𝑂𝑃𝑇 , the gap with outer approximation relaxation is 0 and
𝑋′ is optimal for ISDP.

□

The main consequence of this lemma is that the outer approximation algorithm will not
cycle through integer solutions. Indeed, if an integer solution is repeated in program
𝑆𝐷𝑃(𝑋𝐿), then the algorithm will terminate in the next step by proving a gap of 0
between the inner and outer approximations.

We make a few remarks on this algorithm. Altough it is guaranteed to terminate under
mild assumptions, in the worst case it might need to solve an exponential number of
subproblems. Second, the initialization of T to the set {(𝑒𝑖±𝑒 𝑗 ) (𝑒𝑖±𝑒 𝑗 )⊤ : 𝑖, 𝑗 ∈ [𝑛]}
amounts to the linear constraints on 𝑋 given by

𝑋𝑖𝑖 + 𝑋 𝑗 𝑗 ≥ 2|𝑋𝑖, 𝑗 | ∀𝑖, 𝑗 ∈ [𝑛] .

which are necessary for positive semidefinitness.
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2.3 Refining outer approximations
The efficiency of the outer approximation algorithm for integer, semidefinite programs
depends on two main factors: How fast we can solve each integer sub-problem, and the
quality of the outer polyhedral approximation. Recently, commercial solvers such as
Gurobi have had success solving mixed integer linear and second-order mixed integer
problems, suggesting that improvements to outer approximation algorithms are more
likely to come from the polyhedral approximation side. In Chapter 1, we considered
exactly the problem of finding “good" polyhedral approximations of the feasible set
of a semidefinite optimization program by using spectral information of the objective
coefficient matrix and the matrices determining the constraints of the SDP. Here “good"
is to be understood as that the objective value of the linear problem resulting from
constraining the variables to belong to the polyhedral approximation rather than the
semidefinite cone is close to that of the original problem. The aim of this section is to
develop an algorithm suitable to binary semidefinite programs of the form of BSDP,

which is on variables 𝑥 and 𝑋 . Since the ambient space of the matrix

[
𝑋 𝑥⊤

𝑥 1

]
is

R𝑛+1 and the matrices defining the objective𝐶 and the constraints 𝐴𝑖, 𝑖 ∈ [𝑟] are in R𝑛,

we rather work with the constraint 𝑋 − 𝑥𝑥⊤ ⪰ 0 which is equivalent to

[
𝑋 𝑥⊤

𝑥 1

]
⪰ 0

in order to apply the ideas of Chapter 1. To explain the details, we first discuss
second-order strengthenings of polyhedral outer approximations.

Second-order strengthening
We begin by recalling that the second-order cone L1+𝑛 is given by

L = {(𝑟, 𝑡) : R1+𝑛 : 𝑟 ≥ ∥𝑡∥2
2}.

In the particular case of an integer semidefinite optimization problem, second order
necessary conditions for positive semidefinitness can be imposed, resulting in second-
order integer problems for the outer approximation step in Algorithm 2, rather than
integer linear problems. [38] takes this idea further, and proposes a version of Pajarito
using a second-order cone outer approximation for the outer approximation step. First,
we recall that the rotated second order cone V2+𝑛 is given by

V2+𝑛 = (𝑟, 𝑠, 𝑡) ∈ R2+𝑛 : 𝑟, 𝑠 ≥ 0, 2𝑟𝑠 ≥ ∥𝑡∥2
2.
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This cone is self dual, and can be obtained as an invertible linear transformation
of the standard second-order cone L as (𝑟, 𝑠, 𝑡) ∈ V𝑛+2 if and only if (𝑟 + 𝑠, 𝑟 −
𝑠,
√

2𝑡1, . . . ,
√

2𝑡𝑛) ∈ L2+𝑛. One can check that given 𝑋 ⪰ 0 the rotated second order
cone constraints

(𝑋𝑖𝑖, 𝑋 𝑗 𝑗 ,
√

2𝑋𝑖 𝑗 ) ∈ V3

are valid for each 𝑖 and 𝑗 . Indeed, this corresponds to saying that the 2 by 2 minors
of 𝑋 are positive semidefinite. Equivalent cuts are also described in [18] where the
authors mention that if 𝑋 is positive semidefinite, then 𝑋 satisfies

(
2𝑋𝑖, 𝑗

𝑋𝑖,𝑖 − 𝑋 𝑗 , 𝑗

)
2

≤ 𝑋𝑖,𝑖 + 𝑋 𝑗 , 𝑗 , ∀𝑖 ∈ [𝑛], ∀ 𝑗 ∈ [𝑛] . (2.1)

These cuts are also mentioned in [157] and in fact all of them can be derived us-
ing an alternative version of the Schur Complement Lemma presented in [86]. We
briefly mention this idea in Subsection 2.3. However, it is not clear that enforcing the
PSD constraints on 2 by 2 minors is necessarily beneficial. Although they provide
a tighter approximation, the additional 𝑛2−𝑛

2 cuts added place a heavy burden on the
integer, second-order solver. Therefore, if second order cone cuts are to be added, they
must be few and significantly improve quality of the approximation. In what follows,
we describe a derivation of such cuts, using the specific structure that binary SDPs
arising from binary QCQPs have. Indeed, in Chapter 1, we considered quadratically
constrained quadratic problems of the form

min
𝑥

𝑥⊤𝐶𝑥 + 2𝑑⊤0 𝑥

s.t: 𝑥⊤𝐴𝑖𝑥 + 2𝑑⊤𝑖 𝑥 ≤ 𝑏𝑖, ∀𝑖 ∈ [𝑟]
(2.2)

and their corresponding Shor semidefinite relaxation

inf
𝑥∈R𝑛,𝑋∈S𝑛

⟨𝐶, 𝑋⟩ + 𝑑⊤0 𝑥

s.t: ⟨𝐴𝑖, 𝑋⟩ + 𝑑⊤𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖 ∈ [𝑟],
𝑋 − 𝑥𝑥⊤ ⪰ 0.

(2.3)

By fixing a finite set S ⊆ R𝑛, this latter problem can be relaxed to the second order
cone program
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inf
𝑥∈R𝑛,𝑋∈S𝑛

⟨𝐶, 𝑋⟩ + 𝑑⊤0 𝑥

s.t: ⟨𝐴𝑖, 𝑋⟩ + 𝑑⊤𝑖 𝑥 ≤ 𝑏𝑖 ∀𝑖 ∈ [𝑟],
𝑣⊤

(
𝑋 − 𝑥𝑥⊤

)
𝑣 ≥ 0 ∀ 𝑣 ∈ S.

(2.4)

Notice that the cuts 𝑣⊤ (𝑋 − 𝑥𝑥⊤) 𝑣 ≥ 0 are tailored to the special structure of program
BSDP, and are second-order cuts, resulting in a much tighter approximation of the
convex region 𝑋 − 𝑥𝑥⊤ ⪰ 0 than the polyhedral alternative.

In the experimental section of Chapter 1, we showed that the second-order cone relax-
ation (2.4) where S is a basis of eigenvectors of 𝐶 is within 1% of the objective value
of the semidefinite program for the quadratic knapsack problem and certain extensions
of the extended trust region problems.2 In addition, we tested the methodology on
the semidefinite optimization problems for max cut and the Lovász theta number and
presented results that indicate that the objective of the relaxations is very close to
that of the respective SDPs. Second-order strenghening can also be derived for these
problems, resulting in provably stronger relaxations.

We now propose a second order cone outer approximation algorithm to solve problem
BSDP. In this setting, the ambient space of the positive semidefinite matrices consid-

ered is S𝑛+1 since our variable matrix is

[
𝑋 𝑥

𝑥⊤ 1

]
⪰ 0. Let S be a finite subset of R𝑛.

Let T = {𝑇1, . . . , 𝑇𝑞} ⊆ S𝑛+1
+ and define 𝑃T := {𝑋 ∈ S𝑛+1 : ⟨𝑋,𝑇⟩ ≥ 0 ∀𝑇 ∈ T }.

Consider the second-order relaxation of BSDP given by

min
𝑋,𝑥

⟨𝐶, 𝑋⟩ + 2𝑑⊤0 𝑥

s.t: ⟨𝐴𝑖, 𝑋⟩ + 𝑑⊤𝑖 𝑥 ≤ 𝑏𝑖 ∀ 𝑖 ∈ [𝑟],
𝐷𝑥 = 𝑡,

𝐷𝑖𝑎𝑔(𝑋) = 𝑥, 𝑥 ∈ {0, 1}𝑛,
𝑣⊤

(
𝑋 − 𝑥𝑥⊤

)
𝑣 ≥ 0 ∀𝑣 ∈ S[

𝑋 𝑥

𝑥⊤ 1

]
∈ 𝑃T .

(𝑆𝑂𝐶 (S,T))

With this program at hand, we can introduce the spectral second order outer approxi-
mation algorithm.

2For the quadratic knapsack problem, there are no quadratic constraints, and therefore Theorem 1.3
suggests we simply take S to be a basis of orthonormal eigenvectors of 𝐶.
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Algorithm 3 Spectral-second-order-OA

1: Fix a tolerance 𝜀 > 0. Find 𝑞1 ∈ R𝑛 such that
∑𝑟

𝑖=1 𝑞
1
𝑖
𝐴𝑖 = 𝐼.

2: Use program (CG) to find 𝑞2 with support disjoint from 𝑞1 such that the matrices
𝐶 and

∑𝑟
𝑖=1 𝐴𝑖𝑞

2
𝑖

commute. Let 𝑈 be a matrix that simultaneously diagonalizes 𝐶
and

∑𝑟
𝑖=1 𝐴𝑖𝑞

2
𝑖
. Denote its columns by 𝑣1, . . . , 𝑣𝑛.

3: Set S = {𝑣1, . . . , 𝑣𝑛}. Set T = ∅.
4: Solve problem 𝑆𝑂𝐶 (S,T) finding a minimizer �̄� .
5: Solve problem 𝑆𝐷𝑃( �̄�), finding a minimizer �̂� .
6: if

��〈𝐶, �̂�〉
−

〈
𝐶, �̄�

〉�� > 𝜀 then
7: Find a dual optimal dual solution 𝑆 of program 𝐷𝑆𝐷𝑃( �̄�).
8: Set T = T ∪ {𝑆}. Go to step 4.
9: end if

10: return �̂� .

In this algorithm, we update the outer approximation by adding linear constraints
coming from a dual optimal solution of 𝐷𝑆𝐷𝑃( �̄�𝐿). By Lemma 2.1, this guarantees
the termination of the algorithm. However, since we are now dealing with a second
order cone integer program, one may think of adding second order cuts to further
strengthen the outer approximation. In other words, it might be worthwhile to update
the set S. We describe this process in the next subsection.

An interesting variant of this algorithm consists is using so called lazy constraints. In
fact, notice that Algorithm 3 solves an integer second-order cone program and hence
explores a Branch-and-Bound tree at each iteration. Instead, it seems worthwhile to cut
solutions that are not positive semidefinite in each of the nodes by imposing constraints
of the form 𝑣⊤𝑋𝑣 ≥ 0 dynamically. Such dynamic constraint generation is known as
lazy constraint callback in the optimization literature. Given an instance of problem
𝑆𝑂𝐶 (S,T) with T = ∅ and S = {𝑣1, . . . , 𝑣𝑛} where the 𝑣𝑖 are defined as in Algorithm
3, the variant algorithm maintains a pool of lazy constraints LC that is initially empty.
Then, a Branch-and-Bound procedure is initiated. Whenever an optimal solution �̂�

of a branch is found, the algorithm tests whether 𝑢⊤𝑋𝑢 ≥ 0 where 𝑢 ranges over the
elements LC. If all of these inequalities are satisfied but �̂� is not PSD the algorithm
computes a eigenvector 𝑤 corresponding to the least eigenvalue of �̂� and updates LC
to LC ∪ {𝑤}. This procedure is iterated until optimality is proven by the Branch-and-
Bound procedure. We refer to this algorithm as the Spectral-Lazy-second-order-B&C.

Cut disaggregation
At a given iteration, the outer approximation algorithm solves problem 𝑆𝐷𝑃( �̄�) and
finds an optimal dual solution 𝑆′ of problem𝐷𝑆𝐷𝑃( �̂�). If the gap between the objective
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Algorithm 4 Spectral-Lazy-second-order-B&C

1: Fix a tolerance 𝜀 > 0. Find 𝑞1 ∈ R𝑛 such that
∑𝑟

𝑖=1 𝑞
1
𝑖
𝐴𝑖 = 𝐼.

2: Use program (CG) to find 𝑞2 with support disjoint from 𝑞1 such that the matrices
𝐶 and

∑𝑟
𝑖=1 𝐴𝑖𝑞

2
𝑖

commute. Let 𝑈 be a matrix that simultaneously diagonalizes 𝐶
and

∑𝑟
𝑖=1 𝐴𝑖𝑞

2
𝑖
. Denote its columns by 𝑣1, . . . , 𝑣𝑛. Set S = {𝑣1, . . . , 𝑣𝑛}.

3: Start (or continue) the Branch-and-Bound procedure to solve problem 𝑆𝑂𝐶 (S,T).
4: Whenever a feasible solution �̂� is found go to 5.
5: if 𝜆𝑛 ( �̂�) < −𝜀, add the constraint 𝑤⊤𝑋𝑤 ≥ 0 where 𝑤 is a eigenvector corre-

sponding to 𝜆𝑛 ( �̂�) to program 𝑆𝑂𝐶 (S,T).
6: Go to 3.
7: return �̂� .

of the outer approximation integral program and the inner semidefinite program with
fixed integer values exceeds a threshold 𝜀, the algorithm iterates by refining the outer
approximation adding the constraints ⟨𝑋, 𝑆′⟩ ≥ 0 which guarantees that the outer
approximation algorithms terminates in finite time. This strategy can be improved by
adding cuts that are implied by the positive semidefinitness of 𝑋 and that in turn imply
⟨𝑋, 𝑆′⟩ ≥ 0. The following desegregation of cuts are suggested in Chapter 1 and in
[38].

Observation 2.2. Let 𝑆 ∈ S𝑛+ be a positive semidefinite matrix. We have that
𝑆 =

∑𝑛
𝑗=1 𝜆 𝑗𝑣 𝑗𝑣

⊤
𝑗

where 𝜆 𝑗 , 𝑗 ∈ [𝑛] are the eigenvalues of 𝑆′ and the vector 𝑣 𝑗 is
a eigenvector of 𝑆 corresponding to 𝜆 𝑗 for each 𝑗 ∈ [𝑛]. Then,

⟨𝑋, 𝑣 𝑗𝑣
⊤
𝑗 ⟩ = 𝑣⊤𝑗 𝑋𝑣 𝑗 ≥ 0 ∀ 𝑗 ∈ [𝑛], implies ⟨𝑋, 𝑆⟩ ≥ 0.

These constraints are linear in 𝑋 and therefore can be added to Algorithm 3 in step
8. Perhaps more interestingly, the disaggregation of 𝑆 =

∑𝑛
𝑗=1 𝜆 𝑗𝑣 𝑗𝑣

⊤
𝑗

can also be
used to impose second order cone constraints directly related to the structure of the

semidefinite matrix

[
𝑋 𝑥

𝑥⊤ 1

]
. Notice the optimal dual variable 𝑆∗ obtained in step 7 of

Algorithm (3) is of dimension 𝑛 + 1 × 𝑛 + 1.

Lemma 2.2. Suppose that the matrix

[
𝑋 𝑥

𝑥⊤ 1

]
∈ S𝑛+1 is positive semidefinite, or

equivalently 𝑋 − 𝑥𝑥⊤ ⪰ 0. Let 𝑆 =
∑𝑛+1

𝑗=1 𝜆 𝑗𝑣 𝑗𝑣
⊤
𝑗
⪰ 0. For each 𝑗 ∈ [𝑛 + 1] denote by

𝑧 𝑗 the 𝑛 + 1st entry of 𝑣 𝑗 and by 𝑤 𝑗 ∈ R𝑛 the vector 𝑣 𝑗 restricted to its first 𝑛 entries.
Furthermore, suppose that for each 𝑗 ∈ [𝑛 + 1] the equation
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𝑤⊤
𝑗 𝑋𝑤 𝑗 ≥ (𝑤⊤

𝑗 𝑥)2

holds. Then, it follows that

〈[
𝑋 𝑥

𝑥⊤ 1

]
, 𝑆

〉
≥ 0.

Proof. Observe that for each 𝑗 ∈ [𝑛 + 1] we have

(𝑤⊤
𝑗 𝑥 + 𝑧 𝑗 )2 = (𝑤⊤

𝑗 𝑥)2 + 2𝑤⊤
𝑗 𝑥𝑧 𝑗 + 𝑧2

𝑗 ≥ 0.

This implies that 2(𝑤⊤
𝑗
𝑥)𝑧 𝑗 + 𝑧2 ≥ −(𝑤⊤

𝑗
𝑥)2. Now, we have that 𝑤⊤

𝑗
𝑋𝑤 𝑗 ≥ (𝑤⊤𝑥)2

because 𝑋 − 𝑥𝑥⊤ ⪰ 0. Adding the two previous equations yields

𝑤⊤
𝑗 𝑋𝑤 𝑗 + 2(𝑤⊤

𝑗 𝑥)𝑧 𝑗 + 𝑧2
𝑗 ≥ −(𝑤⊤𝑥)2 + (𝑤⊤𝑥)2 = 0.

To conclude, observe that

〈[
𝑋 𝑥

𝑥⊤ 1

]
, 𝑣 𝑗𝑣

⊤
𝑗

〉
= 𝑤⊤

𝑗 𝑋𝑤 𝑗 + 2(𝑤⊤
𝑗 𝑥)𝑧 𝑗 + 𝑧2

𝑗

so multiplying by 𝜆 𝑗 ≥ 0 (since 𝑆 ⪰ 0) and adding over 𝑗 gives the result.

□

To use the disaggregation of 𝑆′ =
∑𝑛+1

𝑗=1 𝜆 𝑗𝑣 𝑗𝑣
⊤
𝑗

we can add the cuts 𝑤⊤
𝑗
𝑋𝑤 𝑗 ≥ (𝑤 𝑗 𝑧 𝑗 )2

for each 𝑗 ∈ [𝑛 + 1] in step 8 of algorithm 3. By our previous lemma, this ensures that
the conditions of Lemma 2.1 are satisfied.

In the implementation proposed in [38], the authors propose an alternate way of
generating second-order cuts using the disaggregation of 𝑆′ based on the ideas of
[86], which proposes a set of second-order quadratic constraints implied by positive
semidefinitness. We briefly present their idea for comparison. Let 𝑋 ∈ S𝑛 be positive
semidefinite. Fix 𝑖 ∈ [𝑛] and let 𝑤 ∈ R𝑛 be an arbitrary vector. Let 𝑤𝑖 be the 𝑖 − 𝑡ℎ

entry of 𝑤, and �̄� ∈ R𝑛−1 be the vector obtained by removing the 𝑖 − 𝑡ℎ entry of the
vector 𝑤. Let 𝑋𝑖𝑖 be the 𝑖 − 𝑡ℎ diagonal entry of a matrix 𝑋 .

Let 𝑢 ∈ R𝑛−1 be the vector obtained by removing the 𝑖 − 𝑡ℎ entry of the 𝑖 − 𝑡ℎ row of
𝑋 , i.e., by removing 𝑋𝑖𝑖 from the 𝑖 − 𝑡ℎ row. Let �̄� ∈ S𝑛−1 be the matrix obtained by



78

removing from 𝑋 its 𝑖 − 𝑡ℎ column and row. In [86], Kim et al. prove that 𝑋 ⪰ 0 if
𝑋𝑖𝑖 ≥ 0 and:

�̄� ⪰ 0 and (𝑋𝑖,𝑖) �̄� − 𝑢𝑢⊤ ≥ 0.

Next, observe that the constraint

(𝑋𝑖𝑖, �̄�
⊤ �̄��̄�,

√
2�̄�⊤𝑢) ∈ V3 (2.5)

is equivalent to

𝑤⊤ �̄�𝑤 ≥ 0 and 𝑤⊤(𝑋𝑖𝑖 �̄�)𝑤 ≥ (𝑤⊤𝑢)2.

The condition �̄� ⪰ 0 implies 𝑤⊤ �̄�𝑤 ≥ 0 and it is direct to check that (𝑋𝑖,𝑖) �̄�−𝑢𝑢⊤ ≥ 0
implies that �̄�⊤(𝑋𝑖𝑖 �̄�)�̄� ≥ (�̄�⊤𝑢)2. Hence, the constraint 2.5 is implied by 𝑋 ⪰ 0
and can be used to obtain a stronger, second-order cone outer approximation to the
positive semidefinite cone. Setting 𝑤 = 𝑒𝑖 ± 𝑒 𝑗 , 𝑖 > 𝑗 ∈ [𝑛] results in the cuts
V2+𝑛 = (𝑟, 𝑠, 𝑡) ∈ R2+𝑛 : 𝑟, 𝑠 ≥ 0, 2𝑟𝑠 ≥ ∥𝑡∥2

2 proposed in [38]. To generate cuts using
the disaggregation of 𝑆′, the authors heuristically set 𝑖 to be the index of the largest
absolute entry of a vector 𝑣 𝑗 , and add the cut (2.5) by setting 𝑤 = 𝑣 𝑗 .

2.4 Applications to binary semidefinite programs
In this section, we introduce two binary semidefinite problems. In Section 5, we test
the different algorithms considered on the problems below.

Cardinality-constrained Boolean least squares
The cardinality-constrained Boolean least squares is a problem of the following form:

min
𝑥∈R𝑛

∥𝐴𝑥 − 𝑏∥2
2

𝑠.𝑡 :𝑥 ∈ {0, 1}𝑛
𝑛∑︁
𝑖=1

𝑥𝑖 ≤ 𝑘.

where 𝐴 ∈ R𝑚×𝑛 and 𝑏 ∈ R𝑚, 𝑘 ∈ N. This problem appears in digital communications
in the setting of maximum likelihood estimation of digital signals [127]. By writting
𝑥2
𝑖
= 𝑥𝑖, this problem can be written as the following QCQP:
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min
𝑥∈R𝑛

𝑥⊤𝐴⊤𝐴𝑥 − 2𝑏⊤𝐴𝑥 + 𝑏⊤𝑏

𝑠.𝑡 :𝑥2
𝑖 = 𝑥𝑖 ∀ 𝑖 ∈ [𝑛],
𝑛∑︁
𝑖=1

𝑥𝑖 ≤ 𝑘.

(2.6)

In turn, this QCQP can be exactly reformulated as the following BSDP:

inf
𝑥∈R𝑛,𝑋∈S𝑛

〈
𝐴⊤𝐴, 𝑋

〉
− 2𝑏⊤𝐴𝑥 + 𝑏⊤𝑏

s.t: 𝐷𝑖𝑎𝑔(𝑋) = 𝑥,

𝑛∑︁
𝑖=1

𝑥𝑖 ≤ 𝑘,

𝑋 − 𝑥𝑥⊤ ⪰ 0,

𝑥 ∈ {0, 1}.

(BLSSDP)

This problem is closely related to the computation of restricted isometry constants.
These quantities are relevant in the context of compressed sensing and are NP-hard
to compute. In [61], Gally and Pfetsch propose a mixed-integer semidefinite program
to compute them. [87] uses the same problem to test their proposed algorithms. In
contrast to our work, [61, 87] let the 𝑥 variables take arbitrary real values, while we fix
them to be binary.

Quadratic knapsack problem
The Quadratic Knapsack problem [131] was introduced in Subsection 1.4. We recall
that this BQCQP is of the form

max
𝑥∈R𝑛

𝑥⊤𝐶𝑥

𝑠.𝑡 :
𝑘∑︁
𝑗=1

𝑤 𝑗𝑥 𝑗 ≤ 𝑐, 𝑥 ∈ {0, 1}𝑛
(QKP)

where 𝑤 ∈ R𝑛, 𝐶 ∈ S𝑛, 𝑐 ∈ R+.
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This problem can be formulated exactly as the following binary semidefinite program

max
𝑥∈R𝑛,𝑋∈S𝑛

⟨𝐶, 𝑋⟩

s.t: 𝐷𝑖𝑎𝑔(𝑋) = 𝑥,

𝑛∑︁
𝑖=1

𝑤𝑖𝑥𝑖 ≤ 𝑐,

𝑋 − 𝑥𝑥⊤ ⪰ 0,

𝑥 ∈ {0, 1}.

(QKPSDP)

2.5 Experimental results
In this section, we present experiments to evaluate the quality of our proposed al-
gorithms, which are designed to tackle the special structure of binary semidefinite
programs arising as exact formulations of binary quadratic problems. We compare
our algorithms with the majority of mixed-integer semidefinite program solvers that
are known to us by means of evaluating the solving time on instances of the problems
introduced in Section 2.4. These algorithm are the following.

1. The pure Outer Approximation algorithm3 proposed by [103] Pajarito, and im-
plemented in the Julia language [19].

2. The Branch-and-Bound-outer-approximation extension of Pajarito proposed in
[38], implemented in the Julia language as well.

3. The CUTSDP4 algorithm implementation in Yalmip [99].

4. The cutting plane algorithm of Kobayashi and Takano [87].

5. The Branch-and-Cut algorithm of Kobayashi and Takano [87].

The pure outer approximation algorithm implemented in Pajarito is similar to Algorithm
3, as the polyhedral outer approximations are updated in the same fashion. The main
difference is that the default version of the outer approximation algorithm of Pajarito
solves mixed-integer linear problems rather than mixed-integer second order cone
problems. The Branch-and-Bound-Outer-Approximation extension of the algorithm
proposed in [38] is more sophisticated, and works by maintaining a single branch tree
and inner and outer approximating the problems at each node of the tree. CUTSDP

3 https://github.com/jump-dev/Pajarito.jl
4https://yalmip.github.io/solver/cutsdp/
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works by iteratively generating valid constraints for the SDP constraint and then by
solving mixed-integer linear problems. If the solution for an integer linear problem is
not PSD, an eigenvector corresponding to a negative eigenvalue is computed and added
as a constraint in the problem. This algorithm is very similar to the cutting plane of
Kobayashi and Takano. The Branch-and-cut algorithm by the same authors is similar
to Algorithm 4, but without the initialization steps 1 and 2.

To compare the different algorithms, we implemented Algorithm 3 and 4 in Julia, and
used the package Pajarito directly. We implemented the two algorithms of Kobayashi
and Takano. Since CUTSDP is essentially the same algorithm as the cutting plane
algorithm of these two authors, we do not test the latter algorithm.

The main metric used to compare the algorithms is the time taken to solve the opti-
mization problems. For each combination of parameters (which we describe in the
following subsections), we generate 3 random instances. Following Gally [62], we use
the shifted geometric time to aggregate the times taken by each algorithm to solve the
3 instances. The shifted geometric mean of values 𝑦1, . . . , 𝑦𝑛 is defined as

©«
𝑛∏
𝑗=1

(𝑦 𝑗 + 𝑠)ª®¬
1
𝑛

− 𝑠

where the shift 𝑠 was set to 10. The intention of this aggregation metric is that it reduces
the impact of easier instances. Each algorithm was given 30 minutes per instance, and
3 random instances were generated for each configuration of parameters. We present
our results in Tables 1 through 3. In these tables, the columns are defined as follows:

𝑛: Size of the PSD matrix variable.

𝑘: In Tables 2.2 and 2.1, this denotes the value of 𝑘 in problem BLSSDP.

𝑚𝑏: Number of binary decision variables.

𝑚𝑐: Number of continuous decision variables.

Method: Algorithm used to solve the instances. PAJARITO_OA, PAJARITO_TREE,
KOB_1, KOB_2 correspond, in order, to the list at the beginning of this section.
LAZY_SOC and PURE_OA_SOC correspond to Algorithms 4 and 3 respec-
tively.

Time: The shifted geometric mean time in seconds taken to solve the instances.
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#Abort: The number of instances that were aborted either due to numerical or memory
issues, or if the Gurobi solver reported that there are no feasible solutions.

#Limit: The number of instances that exceeded the computation time limit of 30 minutes.

To solve the optimization sub-problems we have used Mosek [8] for semidefinite
programs and Gurobi [125] for the mixed integer programs. All of the code used is
available at https://github.com/dderoux.5

Cardinality-constrained Boolean least squares
We generate random instances of problem BLSSDP by setting 𝑏 = 0 and taking 𝐴 to
have either binary entries sampled uniformly and independently at random or entries
sampled from the standard normal distribution. We set 𝐴 to be a 10 × 𝑛 matrix, and
we vary the size of 𝑛. Observe that the size of the problem only depends on 𝑛. Finally
we set 𝑘 to be either 3 or 5 whenever 𝐴 has normally distributed entries and 𝑘 = 8, 12
whenever 𝐴 has binary entries. These instances are considered in [61] and [87] in their
computations of restricted isometry constants. We present our results in Tables 2.1 and
2.2 with time averaged over three instances. The experiments for the latter table are
larger as these instances seem easier to solve.

Table 2.1: Performance of the different algorithms on the cardinality-constrained binary
least squares problem with normally distributed entries.

𝑛 𝑘 𝑚b 𝑚c Method Time #Abort #Limit
15 3 10 45 PAJARITO_OA 1.66 0 0

PAJARITO_TREE 0.24 0 0
KOB_1 260.24 0 0
KOB_2 9.78 0 0

LAZY_SOC 10.65 0 0
PURE_OA_SOC 0.44 0 0

15 5 10 45 PAJARITO_OA 20.60 0 0
PAJARITO_TREE 3.03 0 0

KOB_1 601.58 0 0
KOB_2 216.08 0 0

LAZY_SOC 24.01 0 0

5The experiments were performed on a 32 GB RAM ThinkPad Lenovo T490s machine running
windows 10 with a Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz 2.11 GHz.
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PURE_OA_SOC 1.04 0 0
20 3 20 190 PAJARITO_OA 21.26 0 0

PAJARITO_TREE 2.99 0 0
KOB_1 1800 0 3
KOB_2 410 0 0

LAZY_SOC 92.88 0 0
PURE_OA_SOC 1.63 0 0

20 5 20 190 PAJARITO_OA 95.96 0 0
PAJARITO_TREE 17.20 0 0

KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC 231.24 0 0
PURE_OA_SOC 1.66 0 0

25 3 25 300 PAJARITO_OA 64.43 0 0
PAJARITO_TREE 7.67 0 0

KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC 1800 0 3
PURE_OA_SOC 2.06 0 0

25 5 25 300 PAJARITO_OA 677.95 0 0
PAJARITO_TREE 101.79 0 0

KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC 1800 0 3
PURE_OA_SOC 4.69 0 0

30 3 30 435 PAJARITO_OA 630.63 0 0
PAJARITO_TREE 60.52 0 0

KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC 1800 0 3
PURE_OA_SOC 3.65 0 0

30 5 30 435 PAJARITO_OA 1800 0 3
PAJARITO_TREE 1740.35 0 1

KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC 1800 0 3
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PURE_OA_SOC 8.85 0 0
35 3 35 595 PAJARITO_OA 674.56 0 3

PAJARITO_TREE 121.10 0 0
KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC 1800 0 3
PURE_OA_SOC 6.65 0 0

35 5 35 595 PAJARITO_OA 1800 0 3
PAJARITO_TREE 1800 0 3

KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC 1800 0 3
PURE_OA_SOC 84.80 0 0

Table 2.2: Performance of the different algorithms on the cardinality-constrained binary
least squares problem with binary entries.

𝑛 𝑘 𝑚b 𝑚c Method Time #Abort #Limit
20 8 20 190 PAJARITO_OA 0.05 0 0

PAJARITO_TREE 0.08 0 0
KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC 56.14 0 0
PURE_OA_SOC 0.16 0 0

20 12 20 190 PAJARITO_OA 0.05 0 0
PAJARITO_TREE 0.05 0 0

KOB_1 1800 0 3
KOB_2 - 3 0

LAZY_SOC 201.14 0 0
PURE_OA_SOC 0.79 0 0

30 8 30 435 PAJARITO_OA 198.92 0 0
PAJARITO_TREE 27.24 0 0

KOB_1 1800 0 3
KOB_2 1800 0 3
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LAZY_SOC 220.11 0 3
PURE_OA_SOC 13.80 0 0

30 12 30 435 PAJARITO_OA 27.27 0 3
PAJARITO_TREE 15.79 0 1

KOB_1 1800 0 3
KOB_2 - 3 0

LAZY_SOC - 3 0
PURE_OA_SOC 11.57 0 0

40 8 40 780 PAJARITO_OA 90.77 0 0
PAJARITO_TREE 29.03 0 0

KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC 110.53 0 3
PURE_OA_SOC 14.71 0 0

40 12 40 780 PAJARITO_OA 186.97 0 3
PAJARITO_TREE 42.45 0 3

KOB_1 1800 0 3
KOB_2 1800 0 3

LAZY_SOC - 3 0
PURE_OA_SOC 15.50 0 0

Quadratic knapsack problem
We generate random instances of the quadratic knapsack problem following [131], who
specify instances that have become the standard to computationally test this optimiza-
tion problem. That is, we first set a density value Δ = 0.8, which corresponds to the
percentage of nonzero elements of the matrix 𝐶. Each weight 𝑤 𝑗 , 𝑗 ∈ [𝑛] is uniformly
randomly distributed in [1, 50]. The 𝑖 𝑗 entry of 𝐶 equals the 𝑗𝑖 entry and is nonzero
with probability Δ, in which case it is uniformly distributed in [1, 100], 𝑖, 𝑗 ∈ [𝑛]. The
capacity 𝑐 of the knapsack is fixed at 1

2
∑𝑛

𝑗=1 𝑤 𝑗 . We present our results in Table 2.3,
again with time averaged over three instances.

Table 2.3: Performance of the different algorithms on the quadratic knapsack problem.

𝑛 𝑚b 𝑚c Method Time #Abort #Limit
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10 10 45 PAJARITO_OA 11.40 0 0
PAJARITO_TREE 0.83 0 0

KOB_1 142.62 0 0
KOB_2 11.73 0 0

LAZY_SOC 15.31 0 0
PURE_OA_SOC 0.73 0 0

20 20 190 PAJARITO_OA 1800 0 3
PAJARITO_TREE 1800 0 3

KOB_1 1800 0 3
KOB_2 - 3 -

LAZY_SOC - 3 -
PURE_OA_SOC 11.56 0 0

30 30 370 PAJARITO_OA 1800 0 3
PAJARITO_TREE 1800 0 3

KOB_1 1800 0 3
KOB_2 - 3 -

LAZY_SOC - 3 -
PURE_OA_SOC 174.38 0 0

40 40 780 PAJARITO_OA 1800 0 3
PAJARITO_TREE 1800 0 3

KOB_1 1800 0 3
KOB_2 - 3 -

LAZY_SOC - 3 -
PURE_OA_SOC 1800 0 3

2.6 Conclusion and future work
In this work we have proposed two algorithms based on spectral decomposition to
improve outer approximation algorithms for integer semidefinite programs whenever
these are derived from binary QCQPs. The experiments evaluating our approach are
promising, and seem to indicate that integer semidefinite programming is a strong
candidate to solve binary QCQPs, competing with state-of-the-art global solvers.

In a sense, these algorithms have been implemented in their most basic form, and
we believe they can be improved using the Branch-and-Bound ideas of [38]. Our
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strengthenings were based on adding cuts derived from eigenvectors of a certain matrix
that simultaneously diagonalizes the matrix determining the objective of an ISDP and
an aggregation of the constraint matrices. We believe more progress can be made in
this direction, and that different alternatives to this approach could be found.

Copositive and completely positive programming are also alternatives to solve BQC-
QPs. Although some algorithms that inner and outer approximate these cones have
been proposed, such as the algorithm of Bundfuss and Dur [29] and the recent work of
Gouveia et al. [66], the size of problems that can be solved remains limited. It would
be interesting to find families of copositive and completely positive problems that can
be cast as integer QCQPs and therefore could be tackled with integer semidefinite
optimization problems, providing a new way to approach these hard conic problems.
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C h a p t e r 3

VECTOR CLOCK OPTIMIZATION VIA LATENCY LENGTHS

3.1 Introduction
Rumor spreading, and more generally information flow on graphs has been active
research topic with important contributions in sociology [67], software engineering
[140], and mathematics [69]. These problems typically involve the minimization of
total number of messages, the total number of transmissions or the completion time
under certain restrictions on how information can be shared [137]. In general, these
problem address the case where a set messages -given upfront- are to be shared through
the network.

In the same spirit, one may study problems where nodes are perpetually generating
information over time, and restrictions on how nodes communicate results in an infor-
mation latency at each node with respect to the latest available information at all other
nodes. This idea of latency of information and temporal distance was introduced and
studied by Kossinets, Kleinberg and Watts in [88] in the context of social networks,
inspired by vector clocks arising in the study of distributed computing systems [92,
108]. Fundamentally, they find that such temporal measures provide structural insights
that are not apparent from analyses of the pure social network topology. Combining
the point of view of rapid information sharing and vector clocks, Chen, An, Niaparast,
Ravi & Rudenko [34] introduce "vector clock problems" in which nodes are perpetually
generating information which must be transmitted over the network while keeping the
maximum or average latency low.

The study of this family of problems is motivated by the need to develop efficient
communication protocols to keep information fresh under stringent communication
constraints and where information is created perpetually. Indeed, very recently the
telecommunications community has been interested in the development such algorithms
[24, 119, 142] as large efforts stemming from academia, government and the private
sector are aimed at developing a sixth generation (6G) mobile communication system
[36, 84, 162]. This system is envisioned to make use of the synergy of terrestrial
networks and satellite constellations to realize ubiquitous global communications. Low
Earth Orbit satellite constellations (LEOs) are an essential component, by enabling low-
cost and high-throughput global communication services [36], especially on sparsely
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populated areas and areas where physical infrastructure is hard to deploy. Satellites can
communicate with each other directly via the inter-satellite link [35], which consist in a
satellite sending a laser-beam to a recipient and thus requires the satellites to align. This
results in discrete time frames in which satellites can communicate with each other, and
naturally low latency of information in the network is paramount for this application
[91]. We refer the reader to [148] for a simple exposition of these considerations.

In [34], the authors develop tools to solve broadcasting problems and their extension to
the vector clock case - which we will introduce shortly - on rooted graphs, by combining
combinatorial ideas with linear programming and rounding. In the rooted version of
the problem, a node, the root, wants to spread a message as fast as possible, or keep the
latency low respect to every other vertex in the vector clock case. Although their results
are encouraging, the tools used seem hard to generalize to the multi-commodity case
which more appropriately captures the problem of low latency in satellite-terrestrial
communications. In this generalized version of the problem, we are given pairs of
sources and terminals (𝑠𝑖, 𝑡𝑖), 𝑖 ∈ 𝐼 where 𝐼 is some index set, and our objective is to
send, as fast as possible, the message from each 𝑠𝑖 to its corresponding 𝑡𝑖, or alternatively
to keep the latency low between them. As far as we are aware, no poly-logarithmic
approximation algorithm that runs in poly time is known for this generalized version
of the problem: The best known approximation is super poly-logarithmic – see [122].
The purpose of this work is to further shed light on approaches to solve it.

In [34], the authors provide a constant-factor approximation algorithm to the rooted
vector clock problem on trees. Interestingly, this algorithm provides local periodic
communications (or schedules, a term we will introduce soon). Informally, this means
that each edge is activated periodically, generating a “locally periodic" communication
pattern over time. This schedule is then repeated to obtain a recurring infinite “global"
schedule. Hence, as another aspect of this pattern, we have the frequency of activation
of an edge for communication: how many times an edge is used for communication in
a given time interval.

The purpose of this chapter is to study if the phenomenon of local periodicity - and hence
edge frequencies- generalizes and controls the quality of schedules in both the (𝑠, 𝑡)
version of the problem and in general graphs. Our main result is to show that indeed,
there are locally periodic schedules that are near-optimal (within a poly-logarithmic
factor) for multi-commodity rumor spreading problems.
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Multi-commodity Vector clock
To formally introduce the problems, we use the notation and ideas developed for vector
clocks [34, 88, 92, 108]. Suppose we are given an undirected graph 𝐺 = (𝑉, 𝐸).
We consider a synchronous model where at each time step, each node generates fresh
information, and is interested in the latest information generated at the other nodes.
We consider information refreshing protocols where information exchange happens
according to the telephone model [71] in synchronous rounds. In this model, each
node at any time step 𝑡 can communicate with at most one of its neighbors. Thus, at
time 𝑡, a matching is selected and all information between both ends of the matched
edges is shared (with no bandwidth limitations). We refer to a sequence of matchings
indexed by time as a schedule. As we wish to understand the long-run behaviour of
information spread in a graph, we will consider infinite schedules, i.e with an infinite
time horizon.

To formalize these ideas, fix a schedule 𝑀 and denote by 𝜙𝑡𝑣 (𝑢) the view that 𝑣 has of
node 𝑢 at time 𝑡, representing the latest information that 𝑣 has of 𝑢 at time 𝑡. More
concretely, 𝜙𝑡𝑣 (𝑢) is the largest 𝑡′ ≤ 𝑡 for which the information of 𝑢 at time 𝑡′ could
be transmitted through the sequence of communications in our fixed schedule 𝑀 and
arrives at 𝑣 by time 𝑡. We assume that everyone starts off with the freshest information
and thus 𝜙0

𝑣 (𝑢) = 0 for all pairs of nodes 𝑣 and 𝑢. Since every node is constantly
generating new information, 𝜙𝑡𝑣 (𝑣) = 𝑡 for all 𝑣 ∈ 𝑉 . The information latency of 𝑣 with
respect to 𝑢 at time 𝑡, denoted by 𝑙𝑡𝑣 (𝑢) is given by 𝑡 − 𝜙𝑡𝑣 (𝑢), and is a measure of the
freshness of information that 𝑣 has of 𝑢. One may interpret this quantity as follows:
suppose 𝑙𝑡𝑣 (𝑢) = 𝑘 . Then, in the most recent 𝑘 steps, there is a path of matched edges
along which communication was scheduled in monotonic order (i.e., from 𝑢 to 𝑣) which
was able to convey the information at 𝑢 from 𝑘 steps earlier to 𝑣 by the current time 𝑡.
The objectives of the vector clock problem is to build schedules which minimize the
sum or maximum of the latencies 𝑙𝑡𝑠 (𝑡) where (𝑠, 𝑡) ∈ 𝐼, the set of pairs of interest.

Problem 3.1 (Multi-commodity Max Vector Clock (MCMVC)). Given a graph 𝐺 and
source-sink pairs (𝑠𝑖, 𝑡𝑖), 𝑖 ∈ 𝐼, find a schedule 𝑀 that minimizes max(𝑠,𝑡)∈𝐼 max𝜏≥0 𝑙

𝜏
𝑠 (𝑡).

Problem 3.2 (Multi-commodity Average Vector Clock (MCAVC)). Given a graph 𝐺

and source-sink pairs (𝑠𝑖, 𝑡𝑖), 𝑖 ∈ 𝐼, find a schedule 𝑀 that minimizes max𝜏≥0
∑

(𝑠,𝑡)∈𝐼 𝑙
𝜏
𝑠 (𝑡).

The special rooted versions of these problems, where the 𝑠, 𝑡 pairs are given by (𝑟, 𝑣)
where 𝑟 is a fixed root in 𝐺 and 𝑣 ranges over the vertices of 𝐺 have been studied in [34]
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by Chen et al. We present their results in the next section. They call these problems
MAXRVC and AVGRVC, respectively.

Multi-commodity broadcast problems
One of the most studied problems in the setup of rumor spreading is the minimum
broadcast problem [50, 51, 79, 122, 137]. We can state its objective in the previously
introduced language, by relating the latency objectives defined above for infinite sched-
ules to a ‘static’ one-phase version of delay. Here, the notion of latency is replaced
by the notion of delay, the first time at which the information of interest is received.
Given (𝑠𝑖, 𝑡𝑖), 𝑖 ∈ 𝐼 pairs, the goal is to pick a finite vector-clock schedule where all
sinks 𝑡𝑖 start with 𝑙0𝑡𝑖 (𝑠𝑖) = −∞. Define the first time at which the latency of any sink
with respect to its corresponding source becomes finite as the delay in reaching this
node. This is the first time at which the sink hears from the source since the start of the
schedule.

Problem 3.3 (Multi-commodity Minimum Broadcast-Time Problem (MCMBT)). Given
a graph𝐺 and source-sink pairs (𝑠𝑖, 𝑡𝑖) 𝑖 ∈ 𝐼, find a finite schedule (under the telephone
model) that minimizes the maximum delay of any sink 𝑡𝑖 from its corresponding source
𝑠𝑖 over all 𝑖 ∈ 𝐼.

We can also consider the average version.

Problem 3.4 (Multi-commodity Average Broadcast-Time Problem MCABT). Given a
graph 𝐺 and source-sink pairs (𝑠𝑖, 𝑡𝑖) 𝑖 ∈ 𝐼, find a finite schedule (under the telephone
model) that minimizes the average delay at sinks 𝑡𝑖 of heading from their corresponding
sources 𝑠𝑖 where the average is taken over all 𝑖 ∈ 𝐼.

In it most classical form, where the pairs are given by (𝑟, 𝑣) with 𝑣 ranging over the
vertices of 𝐺, problem MCMBT is known as the rooted minimum broadcast time
problem (MBT). The analogous rooted version of MCABT is known as rooted average
broadcast time problem (ABT).

For the broadcast problems, in [137], Ravi introduced the first poly-logarithmic approx-
imation algorithm for the Minimum Broadcast-Time problem in any arbitrary network.
This work related such schemes to finding spanning trees that simultaneously have
small maximum degree and diameter (the so-called poise of the graph). In [51], Elkin
and Kortsarz give the best known 𝑂 ( log 𝑘

log log 𝑘
)- approximation factor algorithm, where

𝑘 is the number of terminals the information should be delivered to in the multicast
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version. On the hardness side, [50, 113] showed that the Minimum Broadcast Time
Problem is 3-inapproximable unless 𝑃 = 𝑁𝑃 by reducing the problem to set cover.

In [34], the authors studied the rooted version of vector clock problems and related them
to the corresponding broadcast variants within a logarithmic factor in both directions.
Using these relations, they prove the following results.

Theorem 1.2 of [34]. Let 𝐺 be a graph on 𝑛 nodes and 𝑟 be a vertex of 𝐺. Then, ABT
has a 𝑂 ( log2 (𝑛)

log log 𝑛 )-approximation algorithm.

Theorem 1.3 of [34]. Let 𝐺 be a graph on 𝑛 nodes and 𝑟 be a vertex of 𝐺. Then,
𝐴𝑣𝑔𝑅𝑉𝐶 has a 𝑂 ( log3 (𝑛)

log log 𝑛 )−approximation algorithm.

They provide the only constant-factor approximation algorithm in their paper for
𝐴𝑣𝑔𝑅𝑉𝐶 in the case when 𝐺 is a tree.

Theorem 1.4 of [34]. There exists a 40-approximation for AvgRVC on trees.

In particular, there are no known poly-logarithmic approximations for the multi-
commodity versions (MCMVC and MCMBT, MCAVC and MCABT) of these prob-
lems. The best known guarantee for MCMBT is super-poly-logarithmic but sub poly-
nomial due to Nikzad and Ravi [122], giving an approximation ratio of 2𝑂 (log log 𝑘

√
𝑙𝑜𝑔𝑘)

where 𝑘 = |𝐼 |, the number of source-sink pairs.

In this state of affairs, the constant factor approximation of Theorem 4 of [34] represents
a surprising advance. This theorem works by constructing a schedule that is locally
periodic. More specifically, we say a schedule is global periodic if there exists 𝑃 ∈ N
such that the schedule repeats every 𝑃 time-steps. In other words, the matching used
at time 𝑡 is the same as 𝑡 + 𝑃 for all 𝑡 ∈ N. We say a schedule is local periodic if for
every edge 𝑒, there exists a period 𝑝𝑒 such that the edge appears periodically in every
𝑝𝑒 time-steps. More formally, for every edge 𝑒, there exists 𝑝𝑒, 𝑡𝑒 such that the edge 𝑒

appears only in time-steps 𝑡𝑒 + 𝑘 · 𝑝𝑒 where 𝑘 ∈ N. Note that since the graph is finite,
any local periodic schedule is also a global periodic (where the global period 𝑃 is the
lowest common multiple of all the local periods 𝑝𝑒).

Having a local periodic property provides much more structure to the schedule. For
example, one can now attempt to relate the latency of a message along a path to the sum
of the periods on the edges along the path. If such relationships exists, then instead of
finding an infinitely long schedule, one can focus on finding suitable periods for each
edge of the graph. In Theorem 4 of [34], the authors exploited the structure of a tree,
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where all 𝑢𝑣 paths are unique, and found the correct relationship between periods and
latency. This allowed them to use dynamic programming and linear programming to
find suitable periods and thus a constant approximation to the original problem.

Overview and outline
Our main result is to prove the existence of locally periodic schedules for the MCMVC
and MCAVC problems that are only poly-logarithmic worse than optimal.

Theorem 3.1. There exists local periodic schedules for MCMVC and MCAVC that are
within a poly-logarithmic factor of optimal.

The theorem is proved by showing that there exists a second order cone, integer program
whose objective value approximates, up to polylogarithmic factors, the optimal value
of MCMVC or MCAVC whenever 𝐺 is an arbitrary graph (Theorem 3.3). The above
theorem follows from the fact that the program can be randomly rounded to construct
a local periodic schedule for MCMVC or MCAVC. The proof of Theorem 3.3 has
two parts: First, we define the math program and show that a solution can be rounded
within a poly-logarithmic factor to a local periodic schedule (Proposition 3.1); Second,
we show that starting with an optimal infinite schedule for these problems, via a series
of transformations, we can get a feasible solution to the math program that is only a
poly-logarithmic factor away (Proposition 3.2).

We emphasize there that this theorem only proves the existence of provable good locally
periodic schedules. While its proof involves constructing a local periodic schedule from
the solution to the math program, we do not know how to solve (even approximately)
these second order cone integer programs in polynomial time.

The utility of the result is two-fold: One, we have essentially reduced the poly-
logarithmic approximability of these problems to that of approximating this second
order cone integer program. Two, the definition of the program itself uses the fre-
quency viewpoint of local periodic schedules as the underlying variables, and a length
function on the edges defined as the reciprocal of the edge frequencies. Shortest paths
under these length functions between multi-commodity pairs accurately estimate the
delay of transmitting messages between them in this formulation. Thus, an alternate
interpretation of our result is that the math program boils down to assigning frequen-
cies to the edges of the undirected graph: The sum of edge frequencies around any
node should be no more than one (the telephone model constraint on average). The
objective to minimize is (the max or the average of) the shortest distances between
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pairs according to a latency function that is the shortest path function according to the
reciprocal of the edge frequency. We believe both of these offer fresh approaches to
approximating the multi-commodity rumor problems.

We also show that if 𝐺 is a tree, then there is an algorithm that runs in polynomial
time that approximates MCMBT (and as a consequence, also MCMVC) up to a
constant factor. This was a problem left open in [34]. The best known approximation
factor before our work was 𝑂 ( log 𝑘

log log 𝑘
) for 𝑘 source-sink pairs that follows from the

relationships derived earlier in [80].

Theorem 3.2. Let 𝐺 be a tree, and (𝑠𝑖, 𝑡𝑖), 𝑖 ∈ 𝐼 be source-sink pairs. Then, MCMBT
has a 6-approximation algorithm.

The rest of this chapter is organized as follows:

(a) In Section 3.2 we provide an algorithm for multi-commodity broadcast prob-
lem (MCMBT) on trees and prove that the algorithm provides a factor of 6
approximation. We then proceed to prove Theorem 3.2.

(b) In Section 3.3 We prove Theorem 3.1.

(c) In Section 3.4 we conclude with some remarks.

3.2 The multi-commodity vector clock and minimum time broadcast problems
on trees

In this section, we provide an algorithm for multi-commodity broadcast problem
(MCMBT) on trees and prove that the algorithm provides a factor of 6 approximation
to the problem, and prove Theorem 3.2. Using the ideas in Theorem 2.2 of [34], this
also gives an approximation algorithm for MCMVC in trees.

Corollary 3.1. Let 𝐺 be a tree, and (𝑠𝑖, 𝑡𝑖), 𝑖 ∈ 𝐼 be source-sink pairs. Then, MCMVC
has an 𝑂 (1)-approximation algorithm.

This complements and nearly matches the 2-approximation derived in [34] for the
corresponding rooted analogue, MaxRVC in trees.

Let 𝐺 be a tree rooted at 𝑟 . Let S = {(𝑠𝑖, 𝑡𝑖), 𝑖 ∈ 𝐼} be the set of source-sink pairs.
Given an s-t pair, we define 𝑃(𝑠, 𝑡) to be the unique path that joins them. We define
the intersection graph 𝐺′ as in the proof of 3.2. To simplify the presentation of our
algorithm, we assume that𝐺′ has just one connected component. Otherwise, we simply
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run the algorithm in parallel in each component. We further assume that each vertex of
𝐺 belongs to some 𝑃(𝑠, 𝑡). Otherwise, we simply remove that vertex from 𝐺. Finally,
we assume without loss of generality that the root 𝑟 of 𝐺 is the source for the pair
(𝑠1, 𝑡1). In other words, 𝑠1 = 𝑟. Our algorithm is as follows:

1. Build the intersection graph 𝐺′ of S.

2. Using breadth-first-search in the graph𝐺′ starting at vertex (𝑠1, 𝑡1), label vertices
with the layer number corresponding to its distance to the root (e.g. the first layer
are the neighbors of (𝑠1, 𝑡1), and the second layer are neighbors of the first layer
that is not yet labelled, and so on). Denote the layers 𝐿1 up to 𝐿𝑝.

3. For each layer 𝐿𝑘 , define 𝑅𝑘 to be the set of vertices 𝑣 of 𝐺 that satisfy the
following conditions:

• 𝑣 belongs to the intersection of paths joining 𝑠𝑖 to 𝑡𝑖 and 𝑠 𝑗 to 𝑡 𝑗 for some
(𝑠𝑖, 𝑡𝑖) ∈ 𝐿𝑘 and (𝑠 𝑗 , 𝑡 𝑗 ) ∈ 𝐿𝑘+1.

• 𝑣 is the farthest away from the root among the vertices in the intersection
of 𝑃(𝑠𝑖, 𝑡𝑖) and 𝑃(𝑠 𝑗 , 𝑡 𝑗 ).

4. For all 𝑖 and each 𝑣 in 𝑅𝑖, let 𝑇𝐺 (𝑣) be the subtree of 𝐺 rooted at 𝑣. Define 𝑇 (𝑣)
to be the intersection of 𝑇𝐺 (𝑉) and the union of the paths of the (𝑠𝑡) pairs in 𝐿𝑖+1

Notice that this is a subtree of 𝐺 rooted at 𝑣, and that for each 𝑣 ∈ 𝑅𝑖 these trees
are disjoint, by the second condition in the definition of 𝑣.

5. Let 𝑇𝐺 (𝑠1) = 𝑃(𝑠1, 𝑡1)

6. For 𝑣 = 𝑠1 and for each 𝑣 ∈ 𝑅𝑖 where 𝑖 is odd, do in parallel: find the optimal
𝑀𝐵𝑇 schedule1 in the subtree 𝑇 (𝑣) rooted at 𝑣. Run this schedule backwards to
transmit the message of every node in the tree to 𝑣. Let T𝑜𝑑𝑑 be this schedule.

7. Repeat the above for all 𝑣 ∈ 𝑅𝑖 where 𝑖 is even. Let T𝑒𝑣𝑒𝑛 be this schedule.

8. Run the schedules T𝑜𝑑𝑑 again.

9. In sequence, run T ′
𝑜𝑑𝑑

,T ′
𝑒𝑣𝑒𝑛,T ′

𝑜𝑑𝑑
where T ′

𝑜𝑑𝑑
,T ′

𝑒𝑣𝑒𝑛 are the schedules T𝑜𝑑𝑑 ,T𝑒𝑣𝑒𝑛
respectively but backwards.

1The optimal rooted MBT schedule in a tree can be computed in polynomial time by dynamic
programming.
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We now proceed to prove Theorem 3.2.

Proof. Let M∗ be the optimal schedule for the MCMBT problem 3.3 in 𝐺. Let 𝑂𝑃𝑇

be the optimal transmission time, i.e. the time by which M∗ is able to send the message
from each 𝑠𝑖 to 𝑡𝑖. We first show that our algorithm will successfully send every message
by the end of its execution.

Consider a source-sink pair (𝑠, 𝑡). If 𝑠 = 𝑠1, then its message is sent in the first time
we run Step 5. Now suppose 𝑠 belongs to layer 𝐿𝑘+1. By construction, there exists
𝑟𝑠 ∈ 𝑅𝑘 that is an ancestor of 𝑠. Let 𝑣𝑠 be the lowest common ancestor of 𝑠 and 𝑡; in
other words, let 𝑣𝑠 be the vertex on 𝑃(𝑠, 𝑡) with the shortest distance to the root 𝑠1. We
claim that after Step 6, 7, and 8, 𝑠 can successfully send a message to 𝑣𝑠.

First assume 𝑘 + 1 is odd. Then Step 6 ensures a message is sent from 𝑠 to 𝑟𝑠. Note that
both 𝑣𝑠 and 𝑟𝑠 by definition are both ancestors of 𝑠. This implies both 𝑟𝑠 and 𝑣𝑠 are on
the path from 𝑠 to the root. If 𝑠 sees 𝑣𝑠 on its way to 𝑟𝑠, then our claim is true. Thus,
we may assume 𝑣𝑠 is an ancestor of 𝑟𝑠.

Let 𝑟′ ∈ 𝑅𝑘 such that 𝑟𝑠 ∈ 𝑇 (𝑟′). Note that 𝑟′ by definition belongs in a source-sink
path with label 𝑘 − 1 in 𝐺′. Since 𝑟′ is also an ancestor of 𝑠, 𝑟′ must be closer to the
root than 𝑣𝑠, otherwise, the path from 𝑠 to 𝑣𝑠 contains 𝑟′ and (𝑠, 𝑡) should get label 𝑘
instead, a contradiction. Then, 𝑣𝑠 is on the path from 𝑟𝑠 to 𝑟′, implying when Step 7
would allow a message to be sent from 𝑟𝑠 to 𝑣𝑠, proving our claim. If 𝑘 +1 is even, then
the same analysis can be done to show a message is sent from 𝑠 to 𝑣𝑠 in Steps 7 and 8.

Since Step 9 is running Step 6, 7 and 8 backwards, it is easy to check that in this step
a message can be sent from 𝑣𝑠 to 𝑡. Thus it remains to show that the final schedule
has length at most 6𝑂𝑃𝑇 . Note that schedule T is the optimal schedule to collect all
messages in the subtree 𝑇 (𝑟𝑠) and M∗ is an schedule that also accomplishes this. Thus
the length of T is at most 𝑂𝑃𝑇 . The same argument holds for T ′. Therefore, it follows
that the final combined schedule has length at most 6𝑂𝑃𝑇 .

□

Proof of Corollary 3.1 . The proof follows immediately by applying Theorem 6 of
[34], which states the following: If there exists an 𝛼-approximation for the Minimum
Broadcast-Time Problem, then there exists a 2𝛼-approximation for the maximum rooted
vector clock problem. We observe that although the proof is given for the rooted case,
it goes through verbatim for the multi-commodity case. □
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3.3 The multi-commodity vector clock problem on general graphs
We begin by introducing a mathematical program designed to model optimal schedules
to the MCMVC problem. By changing the objective of this program we can also
capture the MCAVC problem. Therefore, we will only discuss the program for the
former problem in this extended abstract.

Our first observation is that schedules for the MCMVC are, by definition, infinite,
whereas a mathematical program can only characterize finite schedules. Fortunately,
Lemma 3.1 (Theorem 2.1) from [34], implies that it suffices to consider only finite
schedules and then repeat it ad infinitum. Recall that an infinite schedule 𝑀 is (globally)
periodic with period 𝑃 if 𝑀𝑖 = 𝑀𝑖+𝑃 for all 𝑖 ∈ N.

Lemma 3.1. [34] Let 𝑀 be an infinite schedule and 𝐿𝑡 (𝑀) be the corresponding
matrix of latencies (i.e., 𝐿𝑡 (𝑣, 𝑢) = 𝑙𝑡𝑣 (𝑢)). Let 𝑜𝑝𝑡 ∈ N be such that ∥𝐿𝑡 (𝑀)∥1 ≤ 𝑜𝑝𝑡

for all 𝑡 ∈ N. Then, there exists a periodic, infinite schedule 𝑆 with period 𝑜𝑝𝑡 + 1 and
latency matrices 𝐿𝑡 (𝑆) such that ∥𝐿𝑡 (𝑆)∥1 ≤ 2𝑜𝑝𝑡 for all 𝑡 ∈ N.

The result of Lemma 3.1 holds regardless of the matrix norm we choose. Hence we can
use it to only account for source-sink pairs of interest and also either their maximum
or their average (sum).

The key to formulate our mathematical program is the following observation: Under a
periodic schedule of period 𝑃, each edge has a certain frequency, the number of times
the edge is used for communication divided by 𝑃. Our idea is to use a mathematical
program to obtain these fractional frequencies as variables and use it to build a schedule.
Ideally, we want the frequencies to satisfy the following:

1. Since a node can communicate with at most one neighbor at a given time 𝑡 under
the telephone model, the sum of the frequencies of edges incident to a node
cannot exceed 1. Formally, if 𝑝𝑒 is the frequency of an edge, and 𝜕 (𝑢) is the set
of incident edges to 𝑢, we require

∑
𝑒∈𝜕 (𝑢) 𝑝𝑒 ≤ 1.

2. Consider a pair of adjacent nodes 𝑢 and 𝑣 linked by edge 𝑒. If the communication
over 𝑒 happens 𝑠 times in the time window [1, 𝑃] in a periodic schedule, then our
estimate of its frequency is 𝑠

𝑃
. Then, on average, the latency of communication

between these two adjacent nodes is 𝑃
𝑠
= 1

𝑝𝑒
which we will call its latency length.

3. Suppose 𝑢 and 𝑣 are non-adjacent nodes. Let 𝑒1, . . . , 𝑒𝑘 be a simple path between
them. By the previous observation, we expect that the average latency for
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communication between them via this path is
∑𝑘

𝑖=1
1
𝑝𝑒𝑖

where 𝑝𝑒𝑖 is the frequency
of edge 𝑒𝑖. Thus, if we think of the value 1

𝑝𝑒
as edge (latency) lengths, then the

communication time between the nodes is estimated by the shortest path given
by these lengths.

These lead us to our mathematical formulation for the MCMVC problem in a graph
𝐺. Given a set of (𝑠𝑖, 𝑡𝑖) pairs with 𝑖 ∈ I we consider the following program.

min max
𝑖

𝑑𝑠𝑖𝑡𝑖

𝑠.𝑡 :
∑︁

𝑒∈𝜕 (𝑣)
𝑝𝑒 ≤

1
2
∀ 𝑣 ∈ 𝑉,

𝑙𝑒 =
1
𝑝𝑒

∀𝑒 ∈ 𝐸,

𝑝𝑒 > 0

(3.1)

where 𝑑𝑠𝑖𝑡𝑖 is the shortest-distance between 𝑠𝑖 and 𝑡𝑖 according to edge lengths 𝑙𝑒.

Note that the first constraint follows from our first observation about frequencies,
but from reasons that will become clearer later, we have made the more stringent
requirement that the sum of the 𝑝𝑒 over the edges incident to a node is at most 1

2 . The
second constraint is motivated by our second observation on how to relate frequencies
and its delays on an edge. The objective function then follows from our third observation
where the latency between any pair should correspond to the shortest path under these
length functions. The last positive constraint simply ensures that all variables are well-
defined. By using the bounds on the objective function for the problem, we can take
care of the open constraint on 𝑝𝑒 by just requiring each of them to be at least 1

𝑛2 .

Notice that this MP cannot be solved as stated, as we need some way to specify in the
program the fact that the variables 𝑑𝑠𝑖𝑡𝑖 denote the value of the shortest path between
𝑢 and 𝑣 under edge lengths 1

𝑝𝑒
. To do this, we use a standard min-cost unit flow

formulation of shortest paths. We call this the flow formulation of 𝑀𝐶𝑀𝑉𝐶 which we
define formally in Section 3. We also point out that by changing the objective function,
we can easily accommodate other 𝑙𝑝-norms and their rooted variants.

Let 𝐺 be a graph on 𝑛 nodes and 𝑚 edges. Define the path polytope P𝑠𝑡 to be the set
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of vectors 𝑓 𝑠𝑡 = ( 𝑓 𝑠𝑡 (𝑒)) ∈ R𝑚 such that the following equations hold:∑︁
𝑤∈𝜕𝑠

(
𝑓 𝑠𝑡 (𝑠𝑤) − 𝑓 𝑠𝑡 (𝑤𝑠)

)
= 1∑︁

𝑤∈𝜕𝑡

(
𝑓 𝑠𝑡 (𝑡𝑤) − 𝑓 𝑠𝑡 (𝑤𝑡)

)
= −1∑︁

𝑤∈𝜕𝑎

(
𝑓 𝑠𝑡 (𝑎𝑤) − 𝑓 𝑠𝑡 (𝑤𝑎)

)
= 0, 𝑎 ∉ {𝑠, 𝑡}

𝑓 𝑠𝑡 (𝑒) ∈ [0, 1] ∀𝑒 ∈ 𝐸.

𝑓 𝑠𝑡 represents one unit of flow going from 𝑠 to 𝑡. To simplify the notation, we write 𝑓 𝑖

instead of 𝑓 𝑠𝑖𝑡𝑖 for 𝑖 ∈ 𝐼 and 𝑃𝑖 instead of 𝑃𝑠𝑖𝑡𝑖 . We can therefore re-formulate program
(3.1) by replacing the objective function with

min max
𝑖

∑︁
𝑒

1
𝑝𝑒

𝑓 𝑖 (𝑒),

and insist that 𝑓 𝑖 ∈ 𝑃𝑖,∀𝑖 ∈ 𝐼 . An important fact about this problem is that at optimality,
the 𝑓 variables are integral along shortest paths. (The proof of this and other unproven
claims are in the Appendix).

Observation 3.1. If there exists an optimal solution for the flow-reformulated version
of program (3.1), then there exists an optimal solution for which the variables 𝑓 𝑖 (𝑒)
are binary, for all 𝑒 ∈ 𝐸 and all 𝑖 ∈ 𝐼.

Proof. Suppose that we are given an optimal solution for (3.1) (𝑝𝑒, 𝑓 𝑖) with optimal
value 𝑜𝑝𝑡 and where the 𝑓 𝑖 are not binary. Assign to the graph 𝐺 the edge lengths 1

𝑝𝑒

and solve the shortest path problem on 𝐺 using the path polytope. This returns flow
variables 𝑓 𝑖 for every 𝑖 which are binary since the path polytope is integral [39]. Notice
that (𝑝𝑒, 𝑓 𝑖) is feasible for (3.1) and so the objective at that point, i.e

∑
𝑒

1
𝑝𝑒

𝑓 𝑖 (𝑒) ≥ 𝑜𝑝𝑡.
Moreover, notice that ( 𝑓 𝑖 (𝑒)), 𝑒 ∈ 𝐸 is a feasible solution for the shortest path problem
on the graph 𝐺 with edge lengths 1

𝑝𝑒
. It follows that 𝑜𝑝𝑡 =

∑
𝑒

1
𝑝𝑒

𝑓 𝑖 (𝑒) is minimized
by

∑
𝑒

1
𝑝𝑒

𝑓 𝑖 (𝑒), as this last quantity is the optimal value for the shortest path problem
on 𝐺 with edge lengths 1

𝑝𝑒
. Thus, as desired,

∑
𝑒

1
𝑝𝑒

𝑓 𝑖 (𝑒) = 𝑜𝑝𝑡. □

We now turn to prove the main theorem of this section. Namely, that program 3.1
provides an 𝑂 (log5 𝑛) approximation factor for 𝑀𝐶𝑀𝑉𝐶.

Theorem 3.3. For any undirected graph, let 𝑜𝑝𝑡𝑚𝑝 denote the optimal value of program
3.1 and 𝑜𝑝𝑡𝑀𝐶𝑀𝑉𝐶 the maximum 𝑠 − 𝑡 latency of the optimal schedule M. Then for
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some constants 𝑐, 𝑐′,

𝑐 log2 𝑛 · 𝑜𝑝𝑡𝑚𝑝 ≥ 𝑜𝑝𝑡𝑀𝐶𝑀𝑉𝐶 ≥
𝑜𝑝𝑡𝑚𝑝

𝑐′ log3 𝑛
.

Furthermore, the proof of the first inequality constructs a locally periodic schedule
with the corresponding guarantee.

We prove the two inequalities in Propositions 3.1 and 3.2 below respectively.

To prove the first inequality, we will use the so-called pinwheel scheduling [77]:
Suppose that we are given a set of integers 𝐴 = {𝑎1, 𝑎2, . . . 𝑎𝑛}. The pinwheel problem
consists in finding an infinite sequence 𝑆 of integers 𝑗1, 𝑗2, . . . over {1, 2, . . . , 𝑛} such
that any sub sequence of 𝑎𝑖 (1 ≤ 𝑖 ≤ 𝑛) consecutive entries contains at least one of the
𝑖. We call such a sequence correct for 𝐴. For example, the sequence 1, 2, 1, 2, . . . is
a correct sequence for 𝐴 = {𝑎1, 𝑎2} = {2, 3}2. The main result we will be using is
Corollary 3.2 from [77]:

Corollary 3.2 of [77]. Suppose 𝐴 = {𝑎1, . . . , 𝑎𝑛} where
∑𝑛

𝑖=1
1
𝑎𝑖

≤ 1
2 . Then, we can

find an correct sequence for 𝐴 using a greedy algorithm.

We refer the reader to the paper for the proof of this corollary and for the greedy
algorithm used to find the sequence. Further, let us point out that the sequence
provided by the greedy algorithm is periodic. This will ensure that the schedule that
we provide in the next lemma is locally periodic.

Proposition 3.1. Given an optimal solution 𝑝∗, 𝑓 ∗ to (3.1) with objective value 𝑜𝑝𝑡𝑚𝑝 =

𝑍 , there exists a locally periodic, infinite schedule of maximum latency 𝐿 at most
𝑐 · log2 𝑛 · 𝑍 for some constant 𝑐.

Proof. We will build an infinite schedule using Corollary 3.2 from [77]. We will then
prove that this schedule has the following property: for each (𝑠, 𝑡) pair, the latency
between 𝑠 and 𝑡 is at most 𝑐 · log 𝑛 · 𝑍 at any arbitrary time 𝑇 . For each vertex
𝑣 ∈ 𝑉 , let 𝑝∗(𝑣) be the set of corresponding 𝑝∗ values of edges in 𝜕 (𝑣). Define
𝐴𝑣 := {⌊ 1

𝑝
⌋, 𝑝 ∈ 𝑝∗(𝑣)}. By Corollary 3.2 from [77] and the feasibility of 𝑝∗ for

program 3.1, there exist an infinite schedule M𝑣 such that each edge 𝑒 in 𝜕 (𝑣) is
activated at least once in each 1

𝑝𝑒
time intervals. This procedure provides us with

2We observe that the vocabulary used in [77] is slightly different. In this paper, the authors call a
correct sequence a “successful schedule". We have changed the vocabulary as we have given a different
meaning to the word schedule: a sequence of matchings in 𝐺.
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|𝑉 | = 𝑛 vertex schedules, or a table of vertex schedules. A column of this table
corresponds to a time 𝑇 , and each vertex wants to active one of its adjacent edges at
this time. This may lead to conflicts: two edges adjacent to the same vertex wanting to
be activated at the same time (e.g., from their other endpoints). For now, let us suppose
there are no conflicts. we will show how to deal with this afterwards.

Consider an 𝑠, 𝑡 pair and an arbitrary time 𝑇 . By integrality of the flow 𝑓 ∗, there is a
unique path between 𝑠 and 𝑡 determined by the 𝑓 𝑖 that are 1. Call this path 𝑒1, . . . , 𝑒𝑞.
By optimality of 𝑝∗, 𝑓 ∗ we have

∑𝑞

𝑗=1 𝑝
∗
𝑒 𝑗

≤ 𝑍 . Now, consider time 𝑇 ′ = 𝑇 −∑𝑞

𝑗=1
1
𝑝∗𝑒 𝑗

.

By definition of the pinwheel schedule, by time 𝑇 ′ + 1
𝑝∗𝑒1

, edge 𝑒1 has been activated.

After additional time 1
𝑝∗𝑒2

, edge 𝑒2 is activated, which shows that by time 𝑇 ′ + 1
𝑝∗𝑒1

+ 1
𝑝∗𝑒2

edges 𝑒1 and 𝑒2 are activated, in that order. Continuing this way, we see that after time∑𝑞

𝑗=1
1
𝑝∗𝑒𝑖

edges 𝑒1, . . . 𝑒𝑞 have been activated, with 𝑒 𝑗 being activated exactly after 𝑒 𝑗−1

for all 1 ≤ 𝑗 ≤ 𝑞. Therefore, at time 𝑇 , the latency between 𝑠 and 𝑡 is at most
∑𝑞

𝑗=1
1
𝑝∗𝑒𝑖

which in turn is at most 𝑍 .

Let’s now discuss how to solve conflicts. The idea is simply to start the vertex schedules
at different random times, and diluting time by a factor of 𝑂 (log 𝑛) so that with high
probability there are no conflicts. However, we will need to do this carefully so as to
not lose the local periodicity of edges incident to a vertex. For each 𝑣, start the schedule
of 𝑣 at time 𝑡𝑣 where 𝑡𝑣 is drawn uniformly at random from 1, . . . , 𝑁𝑣 where 𝑁𝑣 is the
period of pinwheel schedule of the edges incident on 𝑣. Now, fix a time 𝑇 and let 𝑒 be
incident to 𝑣. Next, we assume that each 𝑝 is the inverse of a power of 2. We can do
this by rounding each 𝑝𝑖 to the closest power of 2 i.e. if 1

2 𝑗+1 ≤ 𝑝 ≤ 1
2 𝑗 for some 𝑗 , we

set 𝑝 = 1
2 𝑗+1 . This results in losing a factor of 2 in objective. Since we insisted 𝑝 ≥ 1

𝑛2 ,
there are at most log 𝑛2 ≤ 2 log 𝑛 different distinct values for the edge frequencies in
the graph. Furthermore, from the property of the greedy algorithm used to provide the
pinwheel schedule, the probability of edge 𝑒 appearing at time 𝑇 in the schedule of 𝑣 is
𝑝𝑒. This process generates at time 𝑇 a random graph 𝐺𝑇 where an edge 𝑒 is selected at
random with probability 𝑝𝑒. Since

∑
𝑒∈𝜕 (𝑣) 𝑝𝑒 ≤ 1

2 , we can use Hoeffding’s inequality
and a simple union bound to argue that with probability at least 1 − 1

𝑛
, the maximum

degree of 𝐺𝑇 is no larger than 4 log 𝑛 + 1.

By Vizing’s theorem [46], there exists an edge coloring of 𝐺𝑇 with at most 4 log 𝑛 + 2
colors, where each color class is a matching. In conclusion, with high probability,
at time 𝑇 there are no more than 4 log 𝑛 + 2 conflicts. We can solve these conflicts
by simply scheduling these matchings in any order by diluting time by a factor of
4 log 𝑛 + 2 but this would destroy local periodicity. We use the fact there are only
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2 log 𝑛 distinct frequencies and dilute time by a further factor of 2 log 𝑛 to retain local
periodicity. Since all frequencies are inverses of powers of two, we bucket together the
different 𝑝’s according to their corresponding power of 2: for 𝑗 ∈ 1, . . . , 2 log 𝑛 we set
𝐵 𝑗 = {𝑝𝑒 = 1

2 𝑗 }. The crucial observation here is that if two edges in the same bucket 𝐵 𝑗

are in conflict at time 𝑇 , then they will be in conflict in time 𝑇 + 2 𝑗 . This periodicity of
the conflicts will allow us to schedule the edges without losing local periodicity. First,
we dilute time 𝑇 by a 2 log 𝑛 factor, obtaining time slots 𝑇1, . . . 𝑇2 log 𝑛. Since we have
at most 2 log 𝑛 frequency buckets, we assign edges in this time 𝑇 in bucket 𝑗 to time
𝑇𝑗 . We further dilute each time 𝑇𝑗 by an additional (4 log 𝑛 + 2) factor (the maximum
degree of 𝐺𝑇 ), obtaining times 𝑇𝑗𝑘 where 𝑘 ranges from 1 to 4 log 𝑛 + 2. Since there
are overall at most 2 log 𝑛 frequency buckets in time 𝑇 and there are at most 4 log 𝑛 + 2
conflicts of edges (over all buckets and hence) in bucket 𝐵 𝑗 , we appropriately assign
each edge in bucket 𝑗 to one of the slots 𝑇𝑗𝑘 with 𝑘 ranging from 1 to log 𝑛 + 2. By
the periodicity of conflicts, we can use this same assignment of slots in times 𝑇 + 𝑙 · 2 𝑗

with 𝑙 ∈ N. It is easy to check that the resulting schedule has no conflicts.

To conclude, observe that an edge 𝑝𝑒 is periodic from the perspective of both of its
endpoints. However, it might happen that both endpoints want to active the edge in
an out of sync manner. To remedy this, we simply assign each edge to one of its
end points, say by using a depth-first algorithm to order the nodes of the graph and
assigning the edge to the endpoint with lower value in the ordering. If a node 𝑣 has
an edge not assigned to it, we don’t consider it when constructing schedule M𝑣 with
pinwheel. Thus, the schedule we obtain is locally periodic. This concludes the proof
of Proposition 3.1. □

We proceed to prove the second inequality in Theorem 3.3.

Proposition 3.2. There exists a feasible solution to program 3.1 with objective value
𝑂 (log3 𝑛)𝑜𝑝𝑡𝑀𝐶𝑀𝑉𝐶 .

Proof. The proof requires various steps, which we list next for clarity. For simplicity
we will write 𝑜𝑝𝑡 for the value of 𝑜𝑝𝑡𝑀𝐶𝑀𝑉𝐶 .

1. Using the optimal MCMVC schedule, we find a schedule of MCMBT with the
same objective value 𝑜𝑝𝑡. This schedule specifies (𝑠, 𝑡) paths in the graph.

2. We build the intersection graph of these paths and using a network decomposition
idea [9], we decompose it into a set of𝑂 (log 𝑛) subgraphs, each of which is made
of disjoint low-diameter subgraphs (where the diameters are also 𝑂 (log 𝑛 · 𝑜𝑝𝑡)).
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3. We convert each low-diameter subgraph into a rooted tree spanning its nodes
such that the time to perform rooted broadcast in the tree is 𝑂 (log 𝑛 · 𝑜𝑝𝑡).

4. In each tree, we use the this rooted broadcast schedule for MBT to derive a
solution for (3.1), of value at most 𝑂 (log2 𝑛 · 𝑜𝑝𝑡), thus losing an additional
logarithmic factor in this step.

5. Finally, we combine these solutions for the 𝑂 (log 𝑛) different forests that a node
may participate in to get a final solution to (3.1) of value 𝑂 (log3 𝑛 · 𝑜𝑝𝑡).

Let 𝐺 be an arbitrary graph and (𝑠𝑖, 𝑡𝑖) 𝑖 ∈ 𝐼 be source sink pair. To simplify our proof,
we will assume that 𝐺 is connected, and that every node in 𝐺 belongs to some 𝑠 − 𝑡

pairs. Otherwise we can simply repeat the argument in the connected components of
𝐺 removing vertices of 𝐺 which are not in any 𝑠 − 𝑡 path.

We begin with the first bullet. Let M∗ be an optimal schedule for problem MCMVC
with minimum maximum latency 𝑜𝑝𝑡. Selecting an arbitrary time 𝑇 greater than 𝑜𝑝𝑡

and looking backwards 𝑜𝑝𝑡 steps, i.e from time 𝑇 − 𝑜𝑝𝑡 + 1 to 𝑇 , gives a schedule
M′ for the MCMBT problem with maximum delay at most 𝑜𝑝𝑡 as clearly in this time
interval every 𝑠 − 𝑡 pair is guaranteed to have transmitted a message from 𝑠 to 𝑡.

Next we detail how to accomplish the second bullet. The idea is to use a low-diameter
decomposition of the intersection graph given by the 𝑠 − 𝑡 pairs. Given an s-t pair, we
define 𝑃(𝑠, 𝑡) to be the unique path that M′ uses to send the message from 𝑠 to 𝑡. We
define the intersection graph 𝐺′ whose vertex set is the set of 𝑠, 𝑡 pairs, and there is an
edge between (𝑠𝑖, 𝑡𝑖) and (𝑠 𝑗 , 𝑡 𝑗 ) if and only if 𝑃(𝑠𝑖, 𝑡𝑖) and 𝑃(𝑠 𝑗 , 𝑡 𝑗 ) intersect. Using a
well-known (see, e.g. Section 2.1 of [17]) result from [9], we can decompose 𝐺′ into
𝑂 (log 𝑛) forests, where for any tree in any of the forest, the depth of the tree is at most
𝑂 (log 𝑛).

We then turn to the third bullet. We denote by 𝐶
𝑗

𝑖
the 𝑗 𝑡ℎ tree of forest 𝑖, we let 𝑄 𝑗

𝑖
be

the subgraph consisting of all the edges (and vertices) of 𝐺 contained in the 𝑠 − 𝑡 paths
of 𝐺′ and let 𝑟𝑖 𝑗 be an arbitrary source node in 𝑄

𝑗

𝑖
.

We focus on converting a single subgraph 𝑄
𝑗

𝑖
rooted at 𝑟𝑖 𝑗 to a tree so we will drop

the index notation and simply write 𝑄 and 𝑟. First, assume without loss of generality
that M′ is a schedule for the problem MCMBT in 𝑄. This is well defined by our
construction of 𝑄. Denote the reverse schedule of 𝑀′ by M′

−. Denote by M̂ the
schedule that alternates between M′ and M′

−. This schedule has delay 2𝑜𝑝𝑡, in the
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sense that after 2𝑜𝑝𝑡 steps, every 𝑡 has heard from their corresponding 𝑠 and every 𝑠

has heard from their corresponding 𝑡.

Let 𝑣 be an arbitrary vertex in 𝑄. We claim that by repeating schedule M̂ 𝑂 (log 𝑛)
times 𝑟 has heard from 𝑣. This follows by observing that any node in a path at distance
𝑙 from the path containing the root 𝑟 in 𝐺′ can reach another node in a path at distance
(𝑙 − 1) by running M̂ once. Since the depth of 𝑄 is 𝑂 (log 𝑛), the claim follows.

Observe that by running this same repeated schedule backwards, we are guarantee to
transmit a message from 𝑟 to every node 𝑣. Hence, it gives a solution to the rooted
broadcast problem with delay 2𝑜𝑝𝑡 · log(𝑛). By using the first edge via which every
node in 𝑄 hears the broadcast message from 𝑟 as its incoming edge (as in [137]), we
can define a directed spanning tree rooted at 𝑟 which provides a solution to the rooted
MBT problem within time 𝑂 (log 𝑛 · 𝑜𝑝𝑡) as desired.

The fourth bullet is the content of Lemma 3.2. By using the distance between any 𝑠 − 𝑡

pair as being at most the distance via the root in the tree that they both occur in, we get
a bound of 𝑂 (log 𝑛 · 𝑜𝑝𝑡) as an upper bound on the delay between the pair. Using the
lemma, we conclude that the feasible solution it gives has objective value an additional
logarithmic factor worse.

Lemma 3.2. Given a tree 𝑄 with root 𝑟, let M be any schedule to the rooted MBT
problem in Q. Then from M we can derive, for each edge 𝑒 a frequency 𝑝𝑒 that is
feasible for (3.1) such that the sum of inverse of the frequencies over any path from a
vertex to the root is at most 𝑂 (log 𝑛) times the delay at that node.

Proof. First, we can assign to each edge in 𝑄 an index 𝑙
𝑄
𝑒 such that the sum over the

𝑙
𝑄
𝑒 over the path 𝑟𝑣 equals the delay from 𝑟 to 𝑣. Let 𝑢 be a node in 𝑄, and 𝑣1 . . . 𝑣𝑘

its children. suppose the message from 𝑟 arrives to 𝑢 at time 𝑘 . Then, 𝑢 will send the
message to its children in some order according to M. If 𝑣 is such a child, we let 𝑙𝑢𝑣 = 𝑖

if 𝑣 is the 𝑖𝑡ℎ children of 𝑣 to talk to 𝑢 after 𝑢 received the message from 𝑟. Notice that
by definition this implies that 𝑣 has delay 𝑘 + 𝑖. It is not hard to see that these lengths
satisfy the required property.

We set
𝑝
𝑄
𝑒 =

1
2𝑙𝑄𝑒 (log 𝑛 + 1)

. (3.2)

For any vertex 𝑣 with 𝑘 children in the tree, the sum of their assigned frequencies is∑︁
𝑒 child of 𝑣

𝑝
𝑄
𝑒 ≤

𝑘∑︁
𝑖=1

1
2𝑖(log 𝑛 + 1) ≤ log 𝑛

2(log 𝑛 + 1) .
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The edge from 𝑣 to its parent has 𝑝𝑒 at most 1
2(log 𝑛+1) leading to

∑
𝑒∈𝜕 (𝑣) 𝑝

𝑄
𝑒 ≤ 1

2
showing that it is feasible for (3.1).

Next, assign to each edge in 𝐺 lengths given by 1
𝑝𝑒

. The distance between 𝑟 and 𝑣 under
this length is then simply the sum over the edges in the r-v path of 1

𝑝𝑒
= 2𝑙𝑄𝑒 (log 𝑛 + 1).

This is only 𝑂 (log 𝑛) times the delay from 𝑟 to 𝑣.

□

To finish the proof, we prove the last bullet. For each edge, recall that it may be part of
𝑂 (log 𝑛) different forests and hence in up to that many different spanning trees in steps
2 and 3. If its frequencies in these trees are 𝑝1

𝑒, . . . , 𝑝
𝑙
𝑒 for 𝑙 = 𝑂 (log 𝑛), we reset its

final frequency to be 𝑝𝑒 =
1
𝑙

max𝑖{𝑝𝑖𝑒}. It is not hard to see that this also stays feasible
but weakens the objective by a further logarithmic factor, giving the final result.

□

Theorem 3.1 can also be proved for problem MCAVC. The proof is similar to the proofs
for MCMVC and the theorem follows immediately from proving Proposition 3.1 and
3.2 for MCAVC. The versions below imply that there is a locally periodic schedule for
MCAVC that is within 𝑂 (log6 𝑛) of optimal.

Proof of Proposition 3.1 for MCAVC. The proof is identical to the original version for
MCMVC. Given a solution to the math program under the new objective that sums
over all distances between (𝑠𝑖, 𝑡𝑖) pairs insterad of the max, one can follow the same
procedure to obtain a local periodic schedule. This schedule guarantees that every edge
𝑒 appears 𝑂 (log2 𝑛) ∗ 𝑙𝑒 where 𝑙𝑒 is the edge-length from the math program. Then,
any (𝑠𝑖, 𝑡𝑖) pair also has latency at most 𝑂 (log2 𝑛) ∗ 𝑑𝑖 at any time 𝑡 where 𝑑𝑖 is the
shortest distance between 𝑠𝑖 and 𝑡𝑖 under the edge lengths. Thus the average latency
for all pairs is also within 𝑂 (log2 𝑛) factor of the math program objective, proving our
proposition. □

Proof of Proposition 3.2 for MCAVC. The idea is to reduce the problem into log 𝑛
instances of MCMVC and then stitch these solutions back together. This will add
another 𝑂 (log 𝑛) factor to the approximation. First, given a schedule for MCAVC with
average latency of 𝑂𝑃𝑇𝑀𝐶𝐴𝑉𝐶 . Fix a particular time and separate the (𝑠𝑖, 𝑡𝑖) pairs into
𝑂 (log 𝑛) buckets of powers of 2 based on their latency at that time. For each bucket 𝑘 ,
we ensure that pairs within the bucket can receive a message between time 2𝑘 and 2𝑘+1.
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Then applying Proposition 3.2 from Step 2, for each bucket 𝑘 , one can obtain a solution
to the math program such that the pairs within each bucket 𝑘 has a graph distance of at
most 𝑂 (log3 𝑛) ∗2𝑘+1. To combine all the buckets, we simply blow up the edge-lengths
by another factor of 𝐵 = 𝑂 (log 𝑛) where 𝐵 is the number of buckets. Furthermore, if
an edge appears in multiple buckets, and thus may be assigned multiple edge-lengths,
simply take the shortest one. This ensures that the shortest distance of any (𝑠𝑖, 𝑡𝑖) pair
in bucket 𝑘 is at most 𝑂 (log4 𝑛) ∗ 2𝑘+1. Therefore, the average of all (𝑠𝑖, 𝑡𝑖) pairs is at
most 𝑂 (log4 𝑛) ∗𝑂𝑃𝑇𝑀𝐶𝐴𝑉𝐶 .

Lastly, it remains to show that combing the 𝑘 buckets does not violate any of the
constraints. Mainly, we need to check that sum of the periods 𝑝𝑒 around any vertex
remains at most 1/2. Note that within each bucket, this constraint was held. If we do
not adjust these periods, if we naively sum across all buckets, then we can guarantee
that the sum is at most 𝐵/2. Since we blew up the length by a factor of 𝐵, thus reducing
the periods by a factor of 𝐵 it follows the sum is now at most 1/2. Note that even
though for any edge that appears in multiple buckets we kept the shortest distance, and
hence the largest period, the sum still remains below 1/2. This completes our proof.

□

3.4 Summary and future work
In this chapter, studied multi-commodity version of previously studied minimum broad-
cast, average broadcast, minimum vector clock and average vector clock. We provided
an algorithm to solve up to constant factors the multi-commodity minimum broadcast
problem on trees, and introduced a second order cone, integer program to solve the
problem on general graphs. The main theoretical question that remains open is whether
we can solve, or at least approximate the provided program in polynomial time. We
note that a positive answer would subsume all previous results, as this is the most
general version of the vector clock/broadcast problem. It could be however that the
more constrained version of the problems have better approximation ratios. A different
way to try to solve this problem is to provide an alternate formulation for specifying
the shortest paths between vertices that does not rely on the flow polytope. Providing
a constant factor approximation algorithm for MCABT in trees is also open.
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CONCLUSIONS AND FUTURE WORK

In this thesis, we revisited the question of approximating semidefinite programs with
LPs. Care was taken to ensure the LPs were not arbitrary, but flexible enough to produce
strong relaxations. In Chapter 1, we presented results showing that strong relaxation
can be obtained in four families of problems. In a sense, these linear programs can
be viewed as programs that incorporate spectral information of the problem while
remaining linear. We believe the questions considered open up different avenues of
research. Although we focused on spectral information, it is possible that many other
approaches can be taken in the formulation of instance-dependent relaxations. Perhaps
the most interesting question left open is whether the linear programs proposed can
approximate the maximum cut problem to a factor better than 2 for any graph. The
experiments performed suggest that this is the case.

In the second chapter, we explored the consequences of incorporating spectral informa-
tion into outer approximation algorithms to solve binary semidefinite programs, with
varying degrees of success. We believe there is still much work to be done in this area.
For example, we posit that strong integral cuts can be derived for the outer approxima-
tion integer second order programs proposed. Advances in this direction would have
a direct impact on the quality of the outer approximation algorithms, allowing one to
tackle larger binary quadratically constrained quadratic problems. For the time being,
it seems that using binary semidefinite programming to solve BQCQPs is still behind
alternative approaches such as linearization and spatial branch and bound. Nonethe-
less, we point out that our investigation was very preliminary, and probably substantial
improvements can be made.

In the last chapter, we consider an infinite horizon vector clock problem, and derived
a structural result for optimal solutions by showing that there are near-optimal locally
periodic schedules. Although we were not able to solve the mathematical program
presented to find the periods, we believe that this result could be exploited to find a
polynomial time algorithm to approximate the multi-commodity vector clock problem.
For now, this problem remains open.
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