
Polyhedral and Algorithmic Methods
in Network Connectivity

by

Michael (Mik) Zlatin

In partial fulfillment of the requirements
for the doctoral degree in

Algorithms, Combinatorics and Optimization

Carnegie Mellon University
Pittsburgh, Pennsylvania

April, 2024

© 2024 Michael Zlatin
All rights reserved

Abstract

This dissertation contains five chapters, each addressing an algorithmic or polyhedral problem in
network connectivity and combinatorial optimization.

The first three chapters consider problems, both classical and novel, in the field of network con-
nectivity augmentation. In these problems, we seek to augment a given graph by making it more
resilient to edge failures. The latter two chapters address problems related to Set Cover polyhedra.

In the first and second chapters, we consider connectivity augmentation in the “Steiner” setting.
In this setting, we are only interested in the connectivity between a specified set of terminal nodes,
rather than the global connectivity of the network. In chapter one, we define the Steiner Tree
Augmentation Problem, the natural generalization of the Tree Augmentation Problem to the Steiner
setting. We employ a relative greedy algorithm to give a 1 + ln(2) + ε approximation, the first
algorithm for this problem with approximation ratio below 2. We then show how to use the local
search methodology of Traub and Zenklusen to bring down the approximation ratio to 1.5 + ε.

In chapter two, we define the more general Steiner Connectivity Augmentation Problem (k-SCAP):
given a Steiner k-edge-connected graph, augment it so that the Steiner edge-connectivity increases
to k + 1. We also define the k-Steiner Augmentation of a Graph problem (k-SAG), which is a
special case of k-SCAP but still generalizes the global connectivity augmentation problem. We
employ a relative greedy technique to give a 1 + ln(2) + ε approximation for k-SCAP when k = 2,
and a 1.5 + ε approximation for k-SAG for any k.

In the third chapter, we consider the well-known Tree Augmentation Problem (TAP) where the
goal is to increase the edge-connectivity of a tree by 1. We take a polyhedral perspective, and show
that the integrality gap of a linear relaxation for TAP (known as the ODD-LP) has integrality gap
upper bounded by (2 − 1

2k−1) for depth-k trees. For constant-depth trees, this is the first known
linear relaxation for TAP with gap less than 2 which can still be optimized over in polynomial time.
The proofs also yield approximation algorithms with matching guarantees.

In chapter four, we define a matroidal generalization of the Tree Augmentation Problem, called
the Base Augmentation Problem. In the Base Augmentation Problem, the goal is to add elements
to a given base of a matroid so that we obtain a set which remains full rank after any of its
elements are deleted. The Tree Augmentation Problem arises when the matroid is graphic. We
characterize the approximability of the Base Augmentation Problem for several common classes of
matroids, showing that it is Set-Cover hard for Transversal and Binary matroids, but polynomial
time solvable for Laminar Matroids. We finish this chapter with a Conjecture on the complexity of
the Base Augmentation Problem for regular matroids.

In the final chapter, we consider a problem related to packing and covering in directed graphs.
Woodall conjectured in 1976 that in any digraph, the minimum cardinality of a directed cut is
equal to the maximum number of pairwise arc-disjoint directed joins. In this chapter, we describe
progress towards resolving this question. In particular, we reduce the problem to a class of bipartite,
“semi-regular” instances and use this to show the existence of an admissible dijoin, as well as various
special cases of Woodall’s conjecture depending on the “balancedness” of the digraph.

Acknowledgements

I sometimes think back to the person I was in 2019, having just finished my undergraduate degree
at Rutgers. I definitely had no idea what I was getting into when I started the Ph.D. Let me begin
by thanking Amnon Attali, Roberta Shapiro, Heman Gandhi, and Steve Hsu for peer-pressuring
me onto this path.

Now, five years later, I know a lot more about graphs! I jest, of course. I’ve learned many things
during my Ph.D. journey, and it has been a truly meaningful and challenging experience. I am
lucky to have met some wonderful people along the way.

I would like to extend my heartfelt gratitude to my advisor Gérard Cornuéjols. You are an inspira-
tion for what it means to live life as a researcher. I have seen how you have built up a community
around you through your work, and it is inspiring. Thank you for believing in me.

Next, I would like to thank R. Ravi. You were like a second advisor to me. I relied on you for
guidance on many things, from preparing talks, to writing papers, to making life choices. Thank
you for all your help, and for telling me what I’m good at.

I would like to express appreciation to my other committee members Ben Moseley and Samir
Khuller. Thank you both for all your support.

I’d also like to thank Dr. Rajiv Gandhi, my mentor since I attended the PACT program in high
school. Whenever I was uncertain about my path (and was smart enough to reach out to you), I
always came out feeling cheered by your support.

I would also like to thank Alexander Schrijver, or more accurately his textbook. I imagine the three
volumes in that tome as the pillars that carry my field. In the days of COVID isolation, I learned
a great deal just by reading this book.

I would like to thank all of my friends. As an ACO student, I belong to at least three communities
here at CMU, and I would like to express my gratitude to each of them for their part in providing
me with a social life during my Ph.D.

To my Tepper friends: I had so much fun travelling to INFORMS with yinz every year. Speaking
of yinz, the YinzOR conference we organize gets better every time, and it’s always a blast. Thanks
to Daniel De Roux for complaining with me and warning me about League. Special thanks to
Siyue Liu for being a true friend and ice skating companion. Thanks to Anthony Karahalios for
his unceasing enthusiasm. Thanks to Seba Vasquez for making me play more soccer. Thanks
to Alex Lim for telling me about random cool things. Thanks to Lin An, Nilsu Uzunlar, Aidin
Niaparast, and Tian Wang for bamboozling me in mafia. Thanks to Savannah Tang and Neha
for your authenticity and friendship. Thanks to Helia Niaparast, Linqing Shen, Weizhong Zhang,
Maca Navarro, Vrishabh Patil, Jody Zhu, and Satyam Verma. Thanks to my upperclassmen friends
who have all gone on to do great things. Thomas Lavastida, you’re an absolute legend. Kyra Gan

and Su Jia: I love you guys. Violet Chen, I miss you even more than your dog. Special thanks to
Rudy Zhou for being a great human and lending me your guidance.

As for Computer Science, I probably spent the most amount of time working in your lounge instead
of my own office. I loved coming to your teas, board game events, and seminars. Thanks to my
board game buddies David Kahn, Marissa Walter, Ziv Scully, Isaac Grosof, Evan Lohn, Josh Clune,
Mattias Scharager, Dravy Sharma. Thanks to Jalani Williams for being a great co-TA. To Justin
Whitehouse, for chats in the lounge. To Anup Agarwal and Arjun Lakshmipathy for delicious
brunches. To Justin Raizes for being an amazing friend and housemate for my entire Ph.D. Thanks
to Tim Hsieh and Jeff Xu for help with puzzles, and to Roger Iyengar for your friendship. Special
thanks to my friend and collaborator Madhusudhan Reddy Pittu. You taught me much.

Though I ended up in ACO, my first love was mathematics. It follows that I have a special fondness
for those who study math. Thank you to my dear friends Sherry Sarkar and Daniel Hathcock. You
make me a better person. To Olha Silina, you’re so cool and funny, and Tolson Bell, my speedy
boy. To Aditya Raut and Anish Sevekari for all the fun times. To Zoe Wellner for introducing me
to spirit island. Thanks to Heather Newman for gracing Tepper with your presence. Pedro Marun,
you are hilarious. Thank you to all members of the soccer and frisbee intramural sports teams,
whose names are too inappropriate for this thesis. To the friends I managed to find in my very
last semester: Long Qian, Eric Wang, Jin Xi Li, Zeyu Zheng, and Ran Tao. Thank you Ran for
bringing your poetry into my life.

Thank you to all my non-CMU companions. Billy Jin and Mioalan Xie, I am so glad our paths
continued to cross after that grad-school visit day. Thanks to Ishan Bansal for fascinating conver-
sations. Thanks to the whole UIUC gang: Rhea Jain, Shubhang Kulkarni, Vasilis Livanos, David
Zheng. I love you guys. Thanks to the Wednesday Bupps and the Second Foundation for building
communities. Thanks to Sidd Goshal and Hao Lin. Stav Ashur and Nathan Eliason, thanks for
taking care of Amnon for me.

Sam Estep, you’re one of my favourite people. Thanks to Sarah Bhaskaran, and all other members
of the shadow wizard money gang. To Samarth Wahal for trying to set me up with girls. To Alexia
Martinez, I am so glad I met you. Thanks to Aigerim Massabayeva, I look forward to when we meet
again. Thanks to Yonatan Attali for the climbs and discussions. Thanks to the entire Edelman
family and connected component thereof.

Thank you to my family in Israel for grounding me, loving me, and reminding me what is important
in this life. The same goes for my entire family here. I would like to remember Benayahu Bitton,
my cousin who was killed on October 7th, 2023. I will never forget your smile.

It should be noted that I would not be where I am without my incredible brother Eitan Zlatin.
You listened to me rant, fed me your food, gave me advice, and were always there for me. Thank
you bro.

To my parents, Mom and Abba, thank you for making me who I am.

2

Contents

1 Introduction 1

1.1 Approximation Algorithms for Network Design . 1

1.1.1 Connectivity Augmentation Problems . 3

1.1.2 Beyond Global Connectivity . 4

1.1.3 Integrality Gaps for TAP . 5

1.2 Integrality Gaps for Set Cover . 7

1.2.1 The Base Augmentation Problem . 8

1.2.2 Woodall’s Conjecture . 10

2 The Steiner Tree Augmentation Problem 14

2.1 Preliminaries . 14

2.2 Our Techniques . 16

2.3 An Improved Approximation for Edge Weighted STAP 18

2.3.1 A Structured 2-Approximation for STAP . 19

2.3.2 Relative Greedy for STAP . 20

2.3.3 Effects of γ-restriction . 22

2.3.4 The Decomposition Theorem . 23

2.3.5 Dynamic Programming to find the best k-thin component 25

2.3.6 A (1.5 + ε)-Approximate Local Search Algorithm 27

3 The Steiner Connectivity Augmentation Problem 32

3.1 Preliminaries . 34

3.2 Technical Overview . 36

3.3 Reductions to SRAP . 41

3.4 A structured 2-approximate solution for SRAP . 42

3.4.1 Complete instances . 43

3.4.2 An R-special 2-approximate solution . 44

3

3.5 A (1 + ln 2 + ε)-approximation for SRAP . 47

3.6 Dropping Directed Links . 49

3.7 The Decomposition Theorem for Hyper-SRAP . 52

3.8 Dynamic Programming to find the best α-thin component 56

3.9 A (1.5 + ε)-approximation for k-SAG . 60

4 On Small Depth Tree Augmentations 63

4.1 Preliminaries . 63

4.1.1 The cut-LP Relaxation . 63

4.1.2 ODD-LP Relaxation . 64

4.2 Improved Integrality Gaps for Trees of depth 2 and 3 66

4.3 Integrality gap for k-level trees . 69

5 The Base Augmentation Problem 72

5.1 Set-Cover Hardness for Binary Matroids . 72

5.2 Set-Cover Hardness for Transversal Matroids . 73

5.3 Laminar Matroids and their Duals . 74

5.4 Network Matroids . 75

5.5 Regular Matroids . 76

6 Woodall’s Conjecture 78

6.1 Lifting . 78

6.1.1 Gadgets . 79

6.1.2 Proof of the Reduction . 80

6.2 An Admissible Dijoin . 83

6.2.1 Balanced edge covers . 84

6.2.2 Admissible partitions . 85

6.2.3 Finding an admissible dijoin . 87

6.2.4 An important example . 87

7 Conclusion 89

7.1 Future Directions . 89

Bibliography 91

Chapter 1

Introduction

In this introduction, I will introduce the necessary background to put the results of this thesis into
context, and explain why these results are important. I will also explain some basic results which
may be of independent interest to those who are new to the field.

My aim is to write the introduction in such a way that a reader can come away with an under-
standing of all the results proved in this thesis just by reading the introduction. Those interested
in proofs can find them in the referenced chapters. Let’s jump right in.

1.1 Approximation Algorithms for Network Design

Many fundamental problems in combinatorial optimization stem from applications to the efficient
design of networks. These problems have a wide range of applications from transportation networks
to communication networks to supply chain networks, and many more.

However, the combinatorial optimization problems which arise in these applications are usually
NP-hard, meaning that designing a fast, exact algorithm is highly implausible. There are many
ways around this barrier, both theoretically and from a practical perspective. A common theme is
the design of approximation algorithms - fast algorithms which return a (potentially) suboptimal
feasible solution whose cost is nevertheless bounded with respect to the optimum.

Many problems considered in this thesis pertain to a specific measure of the resilience of a network
known as “edge-connectivity”. Given a graph G = (V,E), the edge-connectivity λG(u, v) between
a pair of vertices u and v in V , is the maximum number of pairwise edge-disjoint u− v paths in G.
Equivalently, due to Menger’s Theorem, λ(u, v) is the cardinality of the minimum edge cut which
separates u from v.

With this notion of network resilience, we can define a general class of network design problems for
which many classical problems in network design are a special case. The following is known as the
general Survivable Network Design Problem (SNDP).

Problem 1.1.1 (Survivable Network Design Problem). Given a graph G = (V,E) with non-
negative costs on edges c : E → R≥0 and integers ruv ∈ Z for each u, v ∈ V × V , the goal is to
select a set of edges F ⊆ E of minimum cost so that the graph H := (V, F) satisfies λH(u, v) ≥ ruv
for all pairs of vertices u, v.

This problem captures many classical problems in network design. For example:

1

• Suppose ruv = 1 for all u, v ∈ V × V . This is the Minimum Spanning Tree (MST) problem,
which can be solved optimally in polynomial time.

• Suppose ruv = k for all pairs u, v ∈ V ×V . This is the (Weighted) Minimum k-edge-connected
Spanning Subgraph problem (min k-ECSS). When k ≥ 2, the best known approximation ratio
for this problem is 2.

• Suppose R ⊆ V , and ruv = 1 for all u, v ∈ R×R. Then this problem is the Minimum Steiner
Tree problem. The current best approximation ratio for Steiner tree is ln(4) < 1.39.

• Similar to the above problem, let R ⊆ V , and ruv = k for all u, v ∈ R×R. This is the Minimum
k-edge-connected Steiner subgraph problem. If k ≥ 2, the current best approximation ratio
for this problem is 2.

• Suppose that ruv ∈ {0, 1} for all u, v ∈ V × V . This is the Minimum Steiner Forest problem,
for which the current best approximation algorithm has ratio 2.

You may notice that some of the problems in the above list have an approximation ratio of 2, while
for others, we can do better. However, there are no cases of SNDP with approximation ratio greater
than 2. This is because in 2001, Kamal Jain invented a technique known as “iterative rounding” to
give a 2-approximation for general SNDP [Jai01]. Consider the following mathematical program,
which is the natural linear relaxation of an integer program capturing SNDP.

min
∑
e∈E

cexe

s.t
∑

e∈δ(S)

xe ≥ max
{u∈S,v ̸∈S}

ruv, for all S ⊆ V

xe ≥ 0, for all e ∈ E.

Let the polyhedron defined above be denoted by P . Jain showed the following.

Lemma 1.1.2 ([Jai01]). Let x∗ be an extreme point of P . Then there is some e ∈ E for which
x∗e ≥ 1

2 .

The above Lemma is enough to employ an iterative rounding algorithm. Namely, we can find an
extreme point of P using linear programming, then round the largest edge up to a value 1. We
then re-solve the LP to find an extreme point of the residual SNDP problem and repeat. Since P
can be optimized in polynomial time, this yields the following.

Corollary 1.1.3. There is a polynomial time 2-approximation algorithm for SNDP.

It is perhaps surprising that even highly specialized cases of SNDP (such as when ruv = 2 for all
pairs), has the same complexity as general SNDP, as far as we know. This leads to a major question
in the field of network design.

Question: For which cases of SNDP can we achieve an approximation ratio below 2?

As we shall see, there have been major advances in our understanding of this question in recent
years.

2

1.1.1 Connectivity Augmentation Problems

An important subclass of network design problems are network augmentation problems. In these
problems, a given network structure already exists and we seek to augment it by adding additional
edges or vertices (of minimum cost) to improve the network in some way - typically by increasing
its robustness to failures, reducing its diameter, or increasing the amount of flow it can support
between supply and demand nodes.

As we discussed, one important measure of network robustness is the edge-connectivity between
pairs of nodes in the network. If λ(u, v) ≥ k for all pairs of vertices u and v in a graph G, we say
that G is (globally) k-edge-connected. Notice that if G is k-edge-connected, then it can sustain
failures of up to k − 1 edges without being disconnected.

The problem of augmenting the edge-connectivity of a given network by 1 is called the (Weighted)
Connectivity Augmentation Problem (CAP).

Problem 1.1.4 (k-Connectivity Augmentation Problem). Given a k-edge-connected graph G =
(V,E), and collection of links L ⊆ V × V with non-negative costs c : L → R≥0. Return a subset
F ⊆ L of minimum cost so that G′ := (V,E ∪ F) is (k + 1)-edge-connected.

Notice that CAP is a special case of SNDP. Indeed, we can set ruv = k+ 1 for all pairs and ensure
that there is a k-edge-connected graph H of cost 0 in the input to SNDP.

One can also think of the CAP problem as the problem of “covering” the minimum-cuts in a
network with links of varying costs. Interestingly, because of the properties of minimum cuts, the
k-CAP problem reduces to two different problems depending on the parity of k.

When G is a tree (implying k = 1), the k-CAP problem is called the Tree Augmentation Problem
(TAP). A cactus is a graph in which every edge is contained in exactly one cycle. When G is a
cactus (implying k = 2), the k-CAP problem is called the Cactus Augmentation Problem (CacAP).

The following proposition follows from the results of Fleiner and Frank on structure of minimum
cuts in a network [FF09].

Proposition 1.1.5. If k is odd, then k-CAP is equivalent to TAP. If k is even, then k-CAP is
equivalent to CacAP.

Both TAP and CAP have simple 2-approximations, with the first 2-approximation for TAP dating
back to 1981, due to Frederickson and Jaja [FJ81]. The TAP problem was originally introduced
some years earlier by Eswaran and Tarjan, who showed that it is NP-complete [ET76]. Since then,
TAP has received much study, and improved algorithms were obtained in various special cases, such
as when the tree has constant diameter [Nut10], when the costs are bounded [Adj18] [FGKS18], or
when there is some lower bound on smallest non-zero value in an LP solution [IR22]. For weighted
CAP, the first 2-approximation follows from [KV94] who gave a 2-approximation for min k-ECSS
for any k.

After around four decades of active study, the first better-than-2 approximation for general weighted
TAP was given by Traub and Zenklusen in [TZ22b]. They use a relative greedy algorithm to give
a 1 + ln(2) + ε approximation. As discussed earlier, this yields the same guarantee for the k-CAP
problem as long as k is odd. They subsequently improve their approximation ratio down to 1.5+ ε
in [TZ22c]. Finally, in [TZ22a], they give a matching guarantee of 1.5 + ε for k-CAP for any k.
Thus, k-CAP was at last added to the short list of SNDP problems for which a better-than-2
approximation is known.

3

1.1.2 Beyond Global Connectivity

It is important to note that for the above network augmentation problems, the parameter of interest
is the global edge-connectivity of the graph. However, in many applications, we are not interested
in connectivity between all nodes in the graph, but rather the connectivity only between a specified
subset of “important” nodes called terminals. In this case, intermediary “Steiner” vertices are
used in the network simply to help establish connectivity between these terminal nodes. Consider
Figure 1.1. There are four terminal vertices arranged in a unit square. To connect these terminals
using only direct links, the cheapest solution is to purchase the three links of cost 1 in any minimum
spanning tree. However, with the introduction of Steiner vertices, we can create a cheaper network
which still maintains connectivity amongst the terminals.

Figure 1.1: The four large circles are terminals arranged in a unit square in the plane. The smaller circles are
Steiner vertices. While the cost of the left network is 3, the middle network has a reduced cost of 2

√
2 ≈ 2.83

and the right network has cost 4√
3
+ (1− 1√

3
) ≈ 2.73.

Hence, a given network of interest may involve many Steiner nodes. We may want to increase
the edge-connectivity between terminal nodes, but we don’t necessarily care about augmenting
the connectivity of Steiner vertices. These non-global connectivity requirements bring forth new
algorithmic challenges and necessitate the development of novel techniques to handle them.

We define two related Steiner generalizations of the Connectivity Augmentation Problem below.

Problem 1.1.6 (k-Steiner Connectivity Augmentation Problem). We are given a graph G = (V,E)
and a subset of terminalsR ⊆ V such that λG(u, v) ≥ k for all u, v ∈ R×R. We also have a collection
of links L ⊆ V × V with costs c : L→ R≥0. The goal is to choose F ⊆ L of minimum cost so that
the graph G′ = (V,E ∪ F) has λG′(u, v) ≥ k + 1 for all u, v ∈ R×R.

The Steiner Connectivity Augmentation Problem (k-SCAP) is perhaps the most natural problem
in Steiner connectivity augmentation. It simply asks for the cheapest way to augment the edge-
connectivity between the terminals in a graph from k to k + 1. Notice that if R = V in the above
problem, we recover the standard CAP problem.

The second problem we define is easier than k-SCAP, while still generalizing CAP. Recall that in the
standard CAP problem, we can only add links between pairs of vertices in the given graph. What
if we are allowed to use intermediary Steiner nodes during the augmentation process? This may
allow us to obtain cheaper augmentations. To capture this, we define the Steiner Augmentation of
a Graph problem (k-SAG) as follows.

Problem 1.1.7 (k-Steiner Augmentation of a Graph). We are given a k-edge-connected graph
H = (R,E) on terminals R, and a collection of Steiner nodes S. Denote the set of all vertices by

4

V := R∪S. We have a collection of links L ⊆ V ×V with costs c : L→ R≥0. The goal is to choose
F ⊆ L of minimum cost so that the graph G′ = (V,E∪F) has λG′(u, v) ≥ k+1 for all u, v ∈ R×R.

The nuances that distinguish these two problems can be subtle. Consider the pair of examples in
Figure 1.2 in which we seek 4-edge-connectivity between the grey terminal nodes. Notice that in the
left figure, the graph H to be augmented is already globally 3-edge-connected. The white Steiner
vertices outside H can be utilized to achieve a cheaper augmentation, but are not embedded in the
original graph. In contrast, the right figure presents a network which crucially uses Steiner vertices
to establish 3-edge-connectivity between its terminals. We want to augment this network (possi-
bly using additional Steiner vertices) to increase the connectivity between its terminals. Feasible
solutions are shown in blue.

Figure 1.2: A 3-SAG instance is shown on the left, and a 3-SCAP instance is shown on the right. The
shaded nodes are terminals R, the black edges denote the edges of E and the dashed edges represent the links
L. In both pictures, the red dashed links form a feasible solution.

Because these problems are special cases of SNDP, they both admit 2-approximations. One of
the major results of this thesis is that one can achieve better-than-2 approximations for k-SCAP
when k ∈ {1, 2}. Recall that, in global connectivity augmentation, these cases are sufficient to
prove a claim for any k. However, the structure of cuts to be covered is much more complicated
in the Steiner setting, and these reductions no longer hold. Despite this, we are able to achieve a
better-than-2 approximation for the k-SAG problem for any k.

More details can be found in Chapters 2 and 3 where we prove these results. For the sake of
conciseness, I summarize the above discussion and the results of these chapters in the following
theorem.

Theorem 1.1.8 ([RZZ23] [HZ23]). For any ε > 0, there is a polynomial time (1.5+ε)-approximation
for 1-SCAP. There is a polynomial time (1 + ln 2+ ε)-approximation for 2-SCAP. There is a poly-
nomial time (1.5 + ε)-approximation for k-SAG for any k.

The paper [RZZ23] is based on joint work with R. Ravi and Weizhong Zhang. The paper [HZ23]
is based on joint work with Daniel Hathcock.

1.1.3 Integrality Gaps for TAP

The polyhedral approach has been a major theme in the development of improved algorithms for
network design problems, and for combinatorial optimization in general. Often, these two areas
go hand in hand, with a better understanding of the polyhedral structure of a problem leading to
improved algorithms and vice-versa.

5

We now return to one of the most basic problems in connectivity augmentation: that of augmenting
a tree to be a 2-edge-connected graph. In the search for a improved approximations for the Tree
Augmentation Problem, an important and related goal is to find a linear relaxation for TAP with
integrality gap less than 2. The existence of such a polytope, coupled with an associated rounding
algorithm would be enough to breach the barrier of 2 for TAP. Of course, in order to yield an
efficient algorithm, we also need to be able to optimize over this linear relaxation in an efficient
way.

However, while the recent improvements of Traub and Zenklusen [TZ22b] [TZ22c] for TAP achieve
improved approximation ratios, they shed no light on the question of integrality gaps. Loosely
speaking, this is because their algorithms involve a Dynamic Programming step which does not
lend itself to comparison to an optimal fractional solution.

Consider the most basic set-covering linear relaxation for TAP with tree T = (V,E), links L and
costs c. There is a variable for each link, and the constraints encode that that every 1-cut in the
tree must be covered by a link we purchase in our solution. For a link ℓ = (u, v), let Pℓ ⊆ E be the
unique path in T from u to v.

min
∑
ℓ∈L

cℓxℓ

s.t
∑

ℓ:e∈Pℓ

xℓ ≥ 1, for all e ∈ E

xℓ ≥ 0, for all ℓ ∈ L.

Denote the polyhedron defined by the above program by Pcut. The integrality gap of Pcut is known
to be at most 2 (this follows, e.g. from Jain’s result [Jai01]). It is also at least 3

2 , due to a family
of examples given in [CKKK08].

Figure 1.3: A k = 5 instance from the family of instances which demonstrates that the integrality gap of Pcut

is at least 3
2 . The dashed edges represent links, all of which have unit cost. The fractions represent a feasible

fractional solution of cost 2k
3 + 1, while the optimal integral solution has cost k + 1. This shows a gap of at

least 3k+3
2k+3 . This diagram is from [CKKK08].

Hence, as far we currently know, the integrality gap of Pcut may be exactly 2. However, strengthened
formulations for TAP have also been considered. In [FGKS18], the so-called ODD-LP for TAP is
introduced. Similar to the cut-LP, there is a variable for each link ℓ ∈ L, and all constraints which
are present in the cut-relaxation remain. But now, an exponential number of constraints have been
added corresponding to every odd subset of tree edges.

6

Denote the polyhedron defined by the following linear program as Podd.

min
∑
ℓ∈L

cℓxℓ

s.t
∑

ℓ:e∈Pℓ

xℓ ≥ 1, for all e ∈ E

∑
ℓ∈δ(S)

xℓ +
∑

e∈δ(S)∩E

 ∑
ℓ:e∈Pℓ

xℓ

 ≥ |δ(S) ∩ E|+ 1, for all S ⊆ V with |S ∩ E| odd

xℓ ≥ 0, for all ℓ ∈ L.

Because inequalities have been added, we have Podd ⊆ Pcut. It is not hard to see that it is in fact
a strict subset. Hence, the above system is a stronger formulation than the cut-LP for TAP.

The ODD-LP is derived by including a choice subset of “Chvátal cuts” for Pcut. Loosely speaking,
Chvátal cuts are inequalities that may be added to a formulation while preserving integer solutions,
and, if enough rounds of Chvátal cuts are performed, one recovers the convex hull of its integer
points. Of course, this is not necessarily algorithmically useful, since the strengthened formulation
may be intractable to solve.

However, in the case of the ODD-LP, the authors of [FGKS18] show that one can optimize a linear
function over this polyhedron in polynomial time, despite the exponentially many constraints. They
do this by providing an efficient separation oracle, which allows one to run the ellipsoid algorithm by
generating violated constraints on the fly. They also show that the integrality gap of the ODD-LP
is 1 on a subclass of TAP instances (those without “in-links”).

In Chapter 4, we leverage this result to prove an upper bound on the integrality gap of the ODD-LP
for any TAP instance, depending on the depth of the tree to be augmented. This is the first result
which yields a formulation for TAP with integrality gap below 2, at least for instances of constant
depth. In particular, we show the following theorem.

Theorem 1.1.9 ([PRZ22]). The integrality gap of Podd is at most (2− 1
2k−1) on TAP instances of

depth k. Furthermore, a solution with this approximation ratio can be obtained in polynomial time
for any fixed k.

This is based on joint work with Ojas Parekh and R. Ravi.

1.2 Integrality Gaps for Set Cover

Given a m× n matrix A with entries in {0, 1}, and a cost vector c ∈ Rn
≥0, the Set Cover problem

is:

min{cx : Ax ≥ 1, x ∈ {0, 1}n}. (1.1)

The Set Cover problem is so ubiquitous that it seems to require no introduction. Versions of this
problem appear in myriad algorithmic decision-making tasks.

Unfortunately, in its full generality, the Set Cover problem is NP-complete. It’s approximability is
also very well understood. The best approximation ratio for this problem O(logm), which can be

7

obtained using a variety of classical methods in approximation algorithms, from greedy algorithms,
to randomized rounding, to local search.

Consider the greedy protocol for weighted Set Cover, which iteratively picks the remaining set which
covers the greatest number of uncovered elements relative to its cost. It is a standard homework
exercise to show that this algorithm returns a feasible solution whose cost is at most Hm times
the cost of the optimal cover, where Hm is the mth Harmonic number. In fact, a tighter analysis
shows that the approximation ratio of the greedy algorithm is exactly lnm− ln lnm+ θ(1) [Sla96].
In a series of works beginning with Feige [Fei98], it is now known that unless P = NP, there is no
algorithm which obtains an approximation ratio of (1− ε) lnn for general Set Cover in polynomial
time [DS14]).

However, because the Set Cover problem is so prevalent, it has attracted a much more fine-grained
interest in its complexity under more structured circumstances. For example, it is no coincidence
that the network design problems we study in Chapters 2, 3, and 4 of this thesis are all network
augmentation problems. These problems can all be framed as instances of the Set Cover problem
which arise from covering collections of cuts in a graph.

Consider the integer programming formulation in (1). By relaxing the integrality constraints on
the variables, we obtain a significantly more tractable linear program. When do the optimal values
of these two programs coincide? More generally, what can we we bound the gap between these
two optimal values? These are very deep questions. In Chapters 5 and 6, we focus on two specific
topics relevant to this context.

1.2.1 The Base Augmentation Problem

Recall that the Tree Augmentation Problem (TAP) is the problem of adding a minimum cost set
of links to a tree so that it becomes 2-edge-connected. One apparent motivation for TAP is the
desire to obtain a network which is robust to the failure of any single edge, in the sense that the
graph will remain connected after this failure. In this section, we introduce the Base Augmentation
Problem (BAP), a matroidal analogue of TAP, and show how it corresponds to some interesting
classes of the Set Cover problem.

Suppose that M = (E, I) is a matroid with ground set E and independent sets I. Recall that the
rank function rM : 2E → Z≥0 indicates the size of the largest independent set which can be found
within a set S ⊆ E. The rank of the matroid is defined as rM (E) and is denoted as r.

We seek to obtain a set which is somehow “robust” to the failure of any single element. To formalize
this, we say that a is subset S ⊆ E is 1-robust if rM (S \ e) = r for all e ∈ S. Notice that in order
to be 1-robust, S itself must be rull rank. Hence, this definition essentially states that S is 1-robust
if it is still a full rank set even after any single element is removed.

Now, we can define the Base Augmentation Problem.

Problem 1.2.1 (Base Augmentation Problem). We are given a base B ⊆ E of a matroid M =
(E, I), and a cost function c : (E \B)→ R≥0. The goal is to choose a minimum cost set F ⊆ E \B
so that B ∪ F is a 1-robust set.

Notice that ifM is a graphic matroid, then a base ofM corresponds to a spanning tree of the associ-
ated graph. Furthermore, a 1-robust set in this matroid exactly corresponds to a 2-edge-connected
subgraph of G. Hence, the TAP problem is exactly captured by BAP for graphic matroids.

8

While TAP has been intensely studied, we are interested in characterizing the approximability of
the BAP problem on other matroids as well. Furthermore, as we soon describe, the BAP problem
can be modeled as an instance of Set Cover. By studying the integrality gaps of the associated
linear relaxations we uncover interesting connections to Network matrices and total unimodularity.

The BAP problem is a set covering problem. At a high level, it can be seen as the problem of
covering the elements of B with the fundamental circuits Ce which result from adding e to B. Let
us formally define the constraint matrix. For a matroid M with base B, the base-representation
matrix A is the r × (|E| − r) matrix whose rows are indexed by the elements of B, and whose
columns are indexed by the elements of E \B such that Ae,f = 1 if e ∈ Cf and 0 otherwise.

Then the BAP problem with matroid M and base B is exactly captured by the following integer
program, where A is the base-respresentation matrix of M with respect to B.

min{cx : Ax ≥ 1, x ∈ {0, 1}(|E|−r)}.

We seek to understand the integrality gap of the above program for different matroids. We first
show that for both binary and tranversal matroids, the BAP problem is actually general enough
to capture arbitrary Set Cover instances. In other cases, such as for laminar matroids and their
duals, we show that the above formulation is exact, hence BAP can be solved in polynomial time
on these matroid classes.

Of course, when M is graphic, we know from the results on TAP that the integrality gap is at
most 2. Indeed, in this case, one can show that the constraint matrix is a {0, 1} matrix which is
signable1 to be a Network matrix. WhenM is co-graphic, we show that the BAP problem becomes
another well-studied problem called Multi-cut on Trees. The constraint matrix then corresponds
to a matrix which is signable to be the transpose of a Network matrix. Again, one can show that
these matrices have an integrality gap of at most 2 for Set Covering instances.

Theorem 1.2.2. The integrality gap of the BAP problem is at most 2 for graphic and co-graphic
matroids. For laminar matroids and their duals, the integrality gap is 1. For transversal and binary
matroids, it is the same as that for general Set Cover, namely O(log r).

The results on graphic and co-graphic matroids motivated us to study the BAP problem on regular
matroids. Regular matroids are linear matroids which can be represented by a matrix over any
field. However, an equivalent definition is that their base representation matrices are signable to
be totally unimodular. Seymour showed that every totally unimodular matrix can be obtained by
combining Network matrices, their transposes, and the two sporadic R10 matrices using the 1,2,
and 3-sum operations [Sey80]. An analogous statement can easily be seen to hold for matrices
which are signable to be totally unimodular.

As mentioned, both Network-signable matrices and their transposes have integrality gap at most
2 for Set Covering problems. Furthermore, it is easy to check that the two R10 matrices have
integrality gaps at most 2. The two instances of R10 are displayed below:

1Signing a {0, 1}-matrix is multiplying some subset of its entries by -1.

9


1 0 0 1 1
1 1 0 0 1
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1

 and


1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1


Hence, we finish the chapter with a conjecture. If true, this conjecture would have many interesting
implications even outside of the BAP context.

Conjecture 1.2.3. If A is an m× n is a TU-signable matrix, then the integrality gap of

min{cx : Ax ≥ 1, x ∈ {0, 1}n}

is at most 2. Equivalently, the integrality gap of the BAP problem for regular matroids is 2.

This is based on joint work with Madhusudhan Reddy Pittu.

1.2.2 Woodall’s Conjecture

Dual to set covering problems are set packing problems. When both a set covering problem and its
dual have integral linear relaxations, we obtain a min-max relation. Some of the most beautiful and
classical theorems in combinatorial optimization are of this form, including the Max-flow Min-cut
theorem and Edmond’s branching theorem.

However, there is one min-max relation that has remained a question mark for almost 50 years.
Posed in 1976, Woodall’s conjecture posits that in any directed graph, the minimum size of a
directed cut is equal to the maximum number of disjoint “dijoins”.

Let us define these terms.

Definition 1.2.4. Given a directed graph D = (V,A), a dicut is a cut δ+(U) ⊆ A for some
nonempty proper subset U ⊆ V such that δ−(U) = ∅. A dijoin is a set of arcs J ⊆ A whose
contraction yields a strongly connected digraph.

A good way to think about a dicut is a certificate that the digraph is not strongly connected (there
can be no path from a vertex outside the dicut shore to a vertex within it). In fact, the converse
is also true: a directed graph is strongly connected if and only if it contains no dicut.

Since contracting a dijoin yields a strongly connected digraph, for an arcset J ⊆ A to be a dijoin it
is necessary and sufficient for its contraction to eliminate all dicuts. This yields the following two
propositions.

Proposition 1.2.5. Let J ⊆ A be a dijoin and let F ⊆ A be a dicut. Then |J ∩ F | ≥ 1.

Proposition 1.2.6. An arcset J ⊆ A is a dijoin if and only if J intersects every dicut at least
once. Similarly, an arcset F ⊆ A is a dicut if and only if it intersects every dijoin at least once.

Now suppose that D = (V,A) is a fixed digraph. We define two parameters: let τ(D) be the
minimum cardinality of a dicut of D, and let ν(D) be the maximum number of pairwise arc-disjoint
dijoins.

In other words, τ(D) is defined as the optimal solution to the following integer program, with
variables xa for each arc a ∈ A:

10

τ(D) = min{x · 1 : x(J) ≥ 1 for all dijoins J ⊆ A, x ∈ {0, 1}|A|}

Similarly, we can define ν with the following program whose variables correspond to the dijoins of
D.

ν(D) = max{1 · y :
∑
J∋a

yJ ≤ 1 for each arc a ∈ A, y ∈ {0, 1}|A|}

Woodall’s conjecture states that for any digraph, the optimal values of these two programs coincide.

Clearly, there is a dual relationship between the values τ(D) and ν(D). Consider the linear relax-
ations of both programs, and let their optimal values be denoted

¯
τ(D) and ν̄(D) respectively. Since

these are relaxations, we have τ(D) ≥
¯
τ(D) and ν(D) ≤ ν̄(D). Furthmore, by linear programming

duality, we have
¯
τ(D) = ν̄(D). Hence, we have shown that for any digraph, τ(D) ≥ ν(D). We’re

halfway to proving Woodall’s conjecture already!

Of course, the reverse inequality is much more mysterious. There is surprisingly little understanding
of the clutter of dijoins in digraphs. For example, while Woodall’s conjecture is true for digraphs
with τ(D) = 2, it is open for τ = 3, even on planar digraphs. Just this year, the first constant
factor gap was shown [CLR23], demonstrating that in any digraph, we have τ(D) ≤ 6ν(D).

The starting point of our contribution to this problem is notion of an admissible dijoin. Infor-
mally, a dijoin is admissible if it can be packed into a digraph with mincut τ , while “leaving room”
for the τ − 1 remaining dijoins of an optimal packing. For this to be true, setting the weights
on an admissible dijoin J to 0 should result in a digraph with minimum-weight dicut equal to
τ − 1. Clearly, if Woodall’s conjecture holds, then there is an admissible dijoin. We are able to
demonstrate the existence of this “good first step” independently of the conjecture.

Theorem 1.2.7. Let D = (V,A) be a digraph, and τ ≥ 3 the minimum cardinality of a dicut.
Then there exists a dijoin J such that for every dicut δ+(U), |δ+(U) \ J | ≥ τ − 1.

With the above theorem in hand, one could hope to select the admissible dijoin into a packing, and
then apply the theorem inductively to obtain τ integral dijoins. Unfortunately, after the first step,
we are left with a {0, 1}-weighted digraph, to which our theorem does not apply.

However, Theorem 6.0.2 is interesting in that it separates the collection of dijoins from other non-
packing instances such as Q6. The ground set of Q6 has six elements, corresponding to the six
edges of the graph K4. Its subsets correspond to the four triangles in K4. Since we can select two
edges to hit all triangles, we have τ(Q6) = 2, but ν(Q6) = 1 since there are no two edge-disjoint
triangles in K4. Since τ(Q6) ̸= ν(Q6), we say that Q6 does not pack.

Yet, the analogue of Theorem 6.0.2 forQ6 does not hold, since integrally selecting any triangle leaves
no room for any other triangle to be chosen, even fractionally. Hence, our result distinguishes dijoins
from Q6 in this way. Furthermore, it is known that Q6 is a central obstruction to a large class of
instances (the so-called “binary clutters”), as shown by Seymour [Sey77].

Let us discuss some of our techniques. On the way to proving Theorem 6.0.2, we develop a “lifting”
procedure which takes as input any directed graph D with minimum dicut equal to τ , and outputs
a new digraph D′ such that if D′ satisifes Woodall’s conjecture, then so does D. Furthermore, D′

has a special structure. It is a digraph in which every node is either a source or sink vertex, and

11

Figure 1.4: The digraph D27: A (3, 4)-semiregular digraph, in which each node is a source or sink. We have
τ(D27) = 3, and four non-trivial (non-minimum) dicuts are colored green, blue, purple and red. The nodes
of degree τ + 1 are filled in. An admissible dijoin J is shown with dashed arcs, but the solid arcs cannot be
partitioned into two disjoint dijoins. Hence, J cannot be part of an optimal integral packing of dijoins.

all degrees are either τ or τ + 1. We work with these “semi-regular” digraphs and exploit their
structure to prove Theorem 6.0.2, among other results.

The lifting procedure works by iteratively “uncontracting” any node which is not a source or sink,
and then any node with incorrect degree, while preserving the minimum size of a dicut in the
digraph. The uncontraction operation ensures that the presence of τ disjoint dijoins in the lifted
graph can be projected down to τ dijoins in the original one.

Of course, our lifting procedure is of independent interest to anyone interested in studying Woodall’s
conjecture. Our results show that, for the purposes of proving or disproving Woodall’s conjecture,
it suffices to only consider semi-regular digraphs of the form we described.

Let us provide one more example of how we exploit these more structured instances to prove
Woodall’s conjecture in some special cases, depending on the “balancedness” of the digraph.

Suppose for a moment that we performed our lifting procedure, and we ended up with a digraph
D′ such that all vertices have degree τ (and none have degree τ + 1). Then we have a τ -regular
bipartite digraph, which, when viewed as an undirected graph, admits a packing of τ disjoint perfect
matchings. We can show that in this case, each perfect matching is a dijoin, so we have found τ
arc disjoint dijoins! Woodall’s conjecture is satisfied for this digraph.

In general, the number of vertices of degree τ + 1 in D′ is equal to:

∑
(imb(v) mod τ : v ∈ V) ,

where the imbalance of a vertex v is defined as imb(v) := |δ+(v)|− |δ−(v)|, and a mod τ is defined
as the integer in {0, . . . , τ − 1} which is congruent to a modulo τ . We call the above expression the
imbalance of D. As noted above, if D has an imbalance of 0, then Woodall’s conjecture holds. We
also show that Woodall’s holds for digraphs of imbalance τ and 2τ .

Theorem 1.2.8. Let D = (V,A) be a digraph without a cut-vertex where the minimum cardinality
of a dicut is τ ≥ 3. If 1

τ

∑
(imb(v) mod τ : v ∈ V) ∈ {0, 1, 2}, then there exist τ disjoint dijoins.

12

Finally, we note that the results in this chapter have been siginificantly expanded, and the full
paper, Packing dijoins in digraphs and weighted digraphs, has been published in the SIAM Journal
of Discrete Math. This is joint work with Ahmad Abdi and Gérard Cornuéjols.

13

Chapter 2

The Steiner Tree Augmentation
Problem

In the Steiner Tree Augmentation Problem (STAP), we are given a graph G = (V,E), a set of
terminals R ⊆ V , and a Steiner tree T spanning R. The edges L := E \ E(T) are called links and
have non-negative costs. The goal is to augment T by adding a minimum cost set of links, so that
there are 2 edge-disjoint paths between each pair of vertices in R. This problem is a special case of
the Survivable Network Design Problem, which can be approximated to within a factor of 2 using
iterative rounding [Jai01].

In this chapter, we give the first polynomial time algorithm for STAP with approximation ratio
better than 2. In particular, we achieve an approximation ratio of (1.5+ ε). To do this, we employ
the Local Search approach of [TZ22c] for the Tree Augmentation Problem and generalize their main
decomposition theorem from links (of size two) to hyper-links.

This is based on joint work withWeizhong Zhang and R. Ravi, and appeared in SODA 2023 [RZZ23].

Formally, the STAP problem is defined as follows.

Problem 2.0.1 (STAP). We are given as input a graph G = (V,E), a set of terminals R ⊆ V , and
a minimal Steiner tree T spanning R. The edges of G which are not in T are called links and are
denoted by L. That is, L := E(G) \E(T). Note that L may have endpoints in V (T) or V \ V (T).
Finally, we have a cost function c : L→ R≥0.

The goal is to augment T to be a 2-edge-connected Steiner subgraph spanning R. That is, we seek
S ⊆ V \R and F ⊆ L of minimum cost such that the graph (V (T)∪S,E(T)∪F) has two edge-disjoint
paths between every pair of terminals. This is equivalent to requiring that (V (T)∪S,E(T)∪F) is
a 2-edge-connected graph. Thus, we assume in the remainder that V (T) = R.

We show the following improved approximation ratio for STAP.

Theorem 2.0.2. For any ε > 0, there is a (1.5+ε)-approximation algorithm for STAP which runs
in polynomial time.

2.1 Preliminaries

We consider a solution to STAP (S, F) where S ⊆ V and F ⊆ L.

14

r

Figure 2.1: An instance of STAP. The red edges are the edges of the given tree. The dashed edges are the
links, and the blue links form a feasible solution.

Definition 2.1.1. A full component of a STAP solution (S, F), is a subtree of the solution where
each leaf is a terminal (that is, a vertex of R), and each internal node is in V \R.

It is clear that any STAP solution can be uniquely decomposed into link-disjoint full components.
We say that a full component “joins” the terminals that it contains.

Definition 2.1.2. Let (S, F) be a solution to STAP. We say that a set A is joined by (S, F) if
there is a full component with leaves A.

In fact, the feasibility of a solution is determined only by which sets of nodes it joins.

Definition 2.1.3. We say that a tree edge e ∈ E(T) is covered by a solution (S, F) if e lies on
the unique path in the tree Puv between two nodes u and v which are joined by a full component
of (S, F).

Lemma 2.1.4. A solution (S, F) is feasible for STAP iff all tree edges are covered.

Proof. Suppose all tree edges are covered, and consider any cut in the tree induced by an edge
e ∈ E(T). The cut contains e and since e is covered, some link in F also crosses the cut. Thus,
any cut separating terminals has a cardinality of at least 2. This implies two edge-disjoint paths
between u and v for every u and v in R. the augmentation is a 2-edge-connected graph.

Conversely, if some edge e = (u, v) ∈ E(T) is not covered, then the cut e induces in the tree contains
no links and there cannot be two disjoint paths between u and v.

In the WTAP problem, we must choose a set of links to cover all the edges of a given tree. In
particular, each link joins exactly two tree vertices. The added difficulty in the case of STAP is that
full components may join an arbitrary number of terminals. Thus, we introduce the Hyper-TAP
problem as the natural generalization of WTAP to hyper-links, which join arbitrary subsets of tree
vertices.

Problem 2.1.5 (Hyper-TAP). In Hyper-TAP, we are given a tree T = (V,E), and a collection of
hyper-links L ⊆ 2V , with non-negative costs cℓ for ℓ ∈ L. The goal is to cover the edges of the
given tree with the minimum cost subset of hyper-links.

Consider a hyper-link ℓ = {a1, . . . , ak}. We say that the vertices a1, . . . , ak are joined by ℓ. After
fixing a root of T , denote the least common ancestor of {a1, . . . , ak} by lca(a1, . . . , ak) and define
apex(ℓ) := lca(a1, . . . , ak). Let Pa,b be the unique edge path in the tree from a to b.

15

Let Tℓ be the subtree of T consisting of the union of all paths between vertices joined by ℓ.
Equivalently, Tℓ :=

⋃
a∈ℓ Pa,apex(ℓ). We say that the link ℓ covers the edges in Tℓ.

Then, the Hyper-TAP problem is the following covering problem:

min
Z⊆L

{∑
ℓ∈Z

c(ℓ) :
⋃
ℓ∈Z

Tℓ = E

}
.

Clearly, Hyper-TAP is an instance of Set Cover. However, they are in fact equivalent. Indeed,
given any instance of Set Cover with ground set E and subsets S, we can create an instance of
Hyper-TAP in which T is a star, and the edges of T correspond to elements of E. Finally, we
can create a hyper-link ℓ for each S ∈ S covering exactly the edges corresponding to the elements
covered by S.

Thus, we cannot expect to achieve approximation algorithms for general Hyper-TAP better than
those for general Set Cover. However, in proving Theorem 2.0.2, we exploit the structure of Hyper-
TAP instances that come from instances of STAP to achieve improved approximations in this
case.

As noted above, every STAP instance is equivalent to an instance of Hyper-TAP obtained as
follows: for each subset of tree vertices S ⊆ R, find the cheapest full component joining S, and
create a hyper-link ℓS joining S with this cost. However, if we allow full components of unbounded
cardinality, this reduction cannot be carried out in polynomial time. To perform this reduction
efficiently, we restrict the size of the full components we consider.

Definition 2.1.6. We say that a full component is γ-restricted if it joins at most γ terminals.
We say that a solution to STAP is γ-restricted if it uses only γ-restricted full components. Anal-
ogously, we say an instance of Hyper-TAP is γ-restricted if each hyper-link has size at most
γ.

In Section 2.3.3, we show that up to a factor of (1 + ε), it suffices to find the best γ-restricted
solution to STAP for some constant γ(ε). This allows us to reduce an instance of STAP to an
instance of γ-restricted Hyper-TAP in polynomial time, while only losing a factor of (1 + ε) in the
approximation ratio.

2.2 Our Techniques

Our algorithm for (edge-weighted) STAP is a local search algorithm which follows in the vein of
the recent improved approximation algorithms for WTAP due to Traub and Zenklusen [TZ22b].
We find it helpful to first describe the relative greedy (1 + ln(2) + ε)-approximation algorithm for
STAP, and then show how it can be modified to achieve a (1.5 + ε)-approximation.

We begin by briefly describing the methods of [TZ22b]. The relative greedy algorithm for WTAP
begins with an initial 2-approximate feasible solution. It then makes local moves to improve the
current solution by adding carefully chosen subsets of links and dropping links in the initial solution
which are rendered unnecessary for feasibility.

An up-link is a link which joins two nodes having an ancestor-descendant relationship in the tree.
The initial 2-approximate solution for WTAP has a special structure: it consists of only up-links
and each tree edge is covered exactly once. In the WTAP setting, this structured 2-approximate

16

solution can be found efficiently by replacing every link with two up-links to their least common
ancestor and using dynamic programming to find the best up-links only solution [FJ81].

For a given up-link solution U and a subset of links C ⊆ L, dropU (C) is the set of up-links in U
which can be removed from U ∪C while preserving feasibility. In each iteration, the relative greedy
algorithm in [TZ22b] seeks to choose a subset of links C minimizing the ratio between the cost of
links in C, and the cost of up-links in dropU (C). It then adds these links to the current solution
and removes all the links in dropU (C).

However, the minimization cannot be done efficiently over all subsets of links. Traub and Zenklusen
introduce the notion of a k-thin subset of links, and show that one can compute the minimizer over
all k-thin subsets in polynomial time using dynamic programming. Thus, these subsets of links are
simple enough so that we can efficiently choose the best to add at each iteration.

Crucial for the analysis of the algorithm is the property that, as long as the current solution is
expensive, there will always be an improving k-thin subset of links to add. This follows from the
main decomposition theorem of Traub and Zenklusen in [TZ22b].

In order to apply the relative greedy approach to the STAP setting, we need to first find an initial
structured 2-approximate up-link solution covering each tree edge exactly once. We show how to
do this in Section 2.3.1 using Euler tours over the optimal solution components. In particular, we
show the following.

Lemma 2.2.1. Given an instance of STAP, let OPT denote the cost of the optimal solution. There
is a polynomial time algorithm which returns a feasible up-link solution U ⊆ L, with c(U) ≤ 2OPT
and where each edge e ∈ E(T) is covered exactly once.

Next, we need to prove a decomposition result analogous to the theorem for WTAP. We extend
the decomposition theorem for WTAP to arbitrary hyper-links in Section 3.7.

Definition 2.2.2. Let Z ⊆ L be a collection of hyperlinks. We say that Z is k-thin if for each
v ∈ V (T), we have |{ℓ ∈ Z : v ∈ Tℓ}| ≤ k.

Let Pu be the edges covered by up-link u. Given a set of up-links U and a collection of hyper-links
Z ⊆ L, let

dropU (Z) = {u ∈ U : Pu ⊆
⋃
ℓ∈Z

Tℓ}.

Theorem 2.2.3 (Decomposition Theorem). Given an instance of Hyper-TAP (T,L), suppose U
is an up-link solution such that the sets Pu are pairwise edge-disjoint for u ∈ U . Suppose F ⊆ L is
any solution. Then for any ε > 0, there exists a partition Z of F into parts so that:

• For each Z ∈ Z, Z is k-thin for k = ⌈1/ε⌉.

• There exists Q ⊆ U with c(Q) ≤ ε · c(U), such that for all u ∈ U \ Q, there is some Z ∈ Z
with u ∈ dropU (Z). That is, U \Q ⊆

⋃
Z∈Z dropU (Z).

Following the method of Traub and Zenklusen [TZ22b], these two results are enough to prove that
the local greedy algorithm achieves an approximation ratio of 1 + ln 2 + ε. However, in order to
attain a polynomial runtime, we cannot afford to search over arbitrary size hyper-links. This is
where we use the notion of γ-restricted hyperlinks. We extend the result of Borchers and Du for
Steiner trees [BD97], which shows a bounded ratio between optimal γ-restricted Steiner trees and

17

optimal unrestricted Steiner trees, to the case of STAP. This allows us to efficiently approximately
reduce an instance of STAP to an instance of Hyper-TAP, where each hyper-link has size bounded
by a constant.

Lemma 2.2.4 (Bounding loss through restriction). Given an instance of STAP, let OPT be the
optimal value and OPTγ be the optimal value over all γ-restricted solutions. Then for all ε > 0,

there exists γ(ε) = 2⌈
1
ε
⌉ such that

OPTγ
OPT

≤ 1 + ε.

This ensures that we can generate Hyper-TAP instances with only constant-sized hyper-links, which,
in particular, allows for computing the greedy local move used in each iteration of the algorithm in
polynomial time.

To prove Theorem 2.0.2, we use the idea of [TZ22c] to convert the relative greedy algorithm into
a non-oblivious local search algorithm which achieves a better approximation guarantee. The crux
of the improvement is that the local search algorithm is able to leverage the gains by dropping
links that are added during the course of the algorithm, rather than just those in the initial up-link
solution.

However, the decomposition theorem (Theorem 3.2.3) only applies to up-links. To get around this,
we can associate to each link f in a STAP solution F , a set of up-links Wf which are responsible
for covering the same tree edges as f . These are called witness sets. Throughout the algorithm,
we maintain a feasible STAP solution F and a collection of witness sets Wf for f ∈ F such that
U :=

⋃
f∈F Wf is feasible. Whenever we add a collection of links to our solution F , we also add the

associated witness sets to U , as well as drop up-links from witness sets which are unnecessary for
U to be feasible. Finally, when the witness set of a link f becomes empty, we can remove f from
our solution without disrupting feasibility.

The approximation ratio that this method provides is related to maximum size of a witness set.
If the maximum size of a witness set is W , it yields an approximation ratio of HW + ε, where
HW =

∑W
i=1

1
i .

This approach was used in the context of WTAP where the witness set of a link ℓ = (u, v) initially
consists of the up-links {(u, lca(u, v)), (lca(u, v), v))}, which together cover the same tree edges as
the original link ℓ. Since |Wf | = 2 this yields an approximation ratio of 3

2 + ε.

The challenge in the context of STAP is that it is unclear how to associate to each link f a witness
set of at most two up-links. However, the proof of Lemma 2.2.1 yields a natural choice for the
up-links in each witness set arising from the up-links generated by each subpath along the Euler
tour. This choice allows us to prove Theorem 2.0.2.

2.3 An Improved Approximation for Edge Weighted STAP

We prove Theorem 2.0.2 in this section using the outline in Section 2.2. In Section 2.3.1, we show
how to achieve a 2-approximation algorithm for STAP which returns a structured solution involving
up-links with disjoint coverages. In Section 2.3.2, we define a relative greedy algorithm for STAP
which achieves an approximation ratio of 1 + ln(2) + ε. In Section 2.3.3, we show that we can
restrict our search for solutions to STAP to γ-restricted ones while only losing a factor of 1 + ε in
the approximation ratio. In Section 3.7, we prove the decomposition theorem and in Section 3.8,
we describe the dynamic program which allows us to implement our algorithms in polynomial time.

18

Finally, in Section 2.3.6, we show how to modify the relative greedy algorithm using witness sets
to achieve an approximation ratio of 1.5 + ε and prove Theorem 2.0.2.

2.3.1 A Structured 2-Approximation for STAP

Consider an instance of STAP and let (S∗, F ∗) be an optimal augmentation. We describe an
approximation algorithm for STAP which yields a feasible solution (S, F) of cost at most 2c(F ∗).
This approximation ratio is already achievable using Jain’s algorithm for SNDP. However, we show
that we can find an approximate solution (S, F) with nice structural properties. In particular, we
will have S ⊆ V (T), F consisting of only up-links, and the coverage of each ℓ ∈ F being pairwise
disjoint.

We will perform a metric completion step on the instance without loss of generality. For every pair
of nodes u and v in R, consider the shortest path from u to v in the graph (V,L). We add a link
(u, v) with cost equal to the shortest path length. This does not change the problem since any
solution which uses one of the added links may instead use the shortest path instead, paying the
same cost.

Next, we perform shadow completion. Let Puv be the path in T between terminals u and v. If
there exists a link ℓ = (u, v) of cost c, we will also add links ℓ′ = (u′, v′) of cost c where u′, v′ ∈ Puv.
Again, this can be done without loss of generality since any solution which uses an added link may
be converted to a solution to the original instance of the same cost.

It is easy to see that both of these preprocessing steps can be done in polynomial time.

For the following, we will consider the given tree T to be rooted at an arbitrary node r. See
Figure 2.2 for an illustration of the proof of Lemma 2.3.1.

Lemma 2.3.1. Given any feasible solution (S∗, F ∗) to STAP, there exists a solution (S, F) with
c(F) ≤ 2c(F ∗) such that S ⊆ R. Furthermore, F ⊆ L involves only up-links.

Proof. Denote the full components of (S∗, F ∗) by (A∗
1, H

∗
1), . . . , (A

∗
p, H

∗
p). For each full component

(A∗
i , H

∗
i), we will take an Eulerian tour which traverses each link in Hi exactly twice. This yields

an ordering of the terminals in S∗ ∩ R, say r1, . . . , rk. Now, let vi := lca(ri, ri+1) for i = 1, . . . , n,
where rn+1 := r1.

We will consider the set of links F := {(r1, v1), (r2, v2), . . . , (rk, vk)}. It is clear that F contains
only up-links between nodes in R. We will show that c(F) ≤ 2c(F ∗).

Note that the total cost of F ′ := {(r1, r2), (r2, r3), . . . , (rk, r1)} is at most 2c(F ∗) because of the
metric completion step, and the fact that the Eulerian tour traverses each link in F ∗ exactly twice.
Furthermore, the link (ri, vi) is a shadow of (ri, ri+1), so it exists and has at most the cost of
(ri, ri+1). Thus, c(F) ≤ c(F ′) ≤ 2c(F ∗).

We will now show that F is a feasible solution. We want to show that G′ = (R ∪ S,E(T) ∪ F) is a
2-edge-connected graph. It suffices to show that G′ is connected after any edge e ∈ E(T) is deleted.

Thus, we fix some e ∈ E(T) and consider the cut (W, W̄) it induces on the tree T . Notice that
since F ′ is a feasible solution and e must be covered, there must be terminals ri and rj in the Euler
tour with ri ∈ W and rj ∈ W̄ . We assume i < j. In fact, since the tour is a cycle and therefore
returns to its starting node, we also have a pair of vertices ri′ ∈ W̄ and rj′ ∈W with i′ < j′.

We claim that either link (ri, vi) or link (ri′ , vi′) covers e. Indeed, if r ∈ W , then both vi and vi′

are in W as well. In this case, link (ri′ , vi′) covers edge e. Otherwise, if r ∈ W̄ , then both vi and
vi′ are in W̄ and link (ri, vi) covers e.

19

Thus, F is a feasible solution with the desired properties.

r r

r1 r2 r3 r4

r1 r2 r3 r4

v1

v2 = v4

v3

Figure 2.2: An illustration of the existence of a 2-approximate up-link solution for STAP. In the top left
picture, the blue dashed edges are a full component of the optimal solution. In the top right picture, r1, . . . , r4
denotes the ordering of the terminals obtained from an Euler tour of the component in the left picture. Here,
the blue links only go between terminals. In the bottom picture, shadows of the links in picture 2 are used to
obtain a solution that only uses up-links.

Finally, we will need the following standard result, showing that we can shorten the up-link solution
by replacing certain links with their shadows, so that each tree edge is covered exactly once.

Lemma 2.3.2. Given an up-link solution U , we can in polynomial time find an up-link solution
U ′ with c(U ′) ≤ c(U) and with |{ℓ ∈ U ′ : e ∈ Pℓ}| = 1 for all e ∈ E(T).

By Lemma 2.3.1, if the optimal solution to a STAP instance has cost OPT , then there is an up-
link solution of cost at most 2OPT . Since the optimal up-link solution can be easily computed in
polynomial time (see e.g. [FJ81]), we obtain Lemma 2.2.1.

2.3.2 Relative Greedy for STAP

We now give the algorithm for STAP which, given any ε > 0, computes a solution F with cost at
most (1 + ln 2 + ε)OPT and runs in polynomial time. See Algorithm 3.3.

We assume we are given a shadow-complete, metric-complete instance of STAP with graph G =
(V,E), tree T = (R,E(T)), links L := E \ E(T) with costs c : L→ R.

The algorithm uses Lemma 2.2.1 to compute an up-link solution U that has cost at most 2OPT
and can be chosen to have Pu disjoint for each u ∈ U .

By Lemma 2.2.4, we may restrict our attention to finding a γ-restricted solution to the STAP
instance for sufficiently large γ. Our algorithm now constructs an equivalent instance of γ-restricted

20

Algorithm 1: Relative greedy algorithm for STAP

1.1 Input: A shadow-complete, metric-complete instance of STAP with graph G = (V,E),
tree T = (R,E(T)), links L = E \ E(T), and c : L→ R. Also an ε > 0.

1.2 Output: A solution F ⊆ L with c(F) ≤ (1 + ln(2) + ε)OPT .
1.3

1. Compute a 2-approximate up-link solution U such that each edge e ∈ E(T) is covered
exactly once (Lemma 2.2.1).

2. Let ε′ := ε/2
1+ln 2+ε/2 and γ := 2⌈1/ε

′⌉.

3. For each S ⊆ R where |S| ≤ γ, compute the cheapest full component joining S and denote
the cost by cS .

4. Create an instance of γ-restricted Hyper-TAP on tree T = (R,E(T)) with hyper-links
L = {ℓS : S ⊆ R, |S| ≤ γ}. Set the cost of hyper-link ℓS to be cS .

5. Initialize F := ∅

6. Let k := ⌈4/ε⌉

7. While U ̸= ∅:

• Compute the k-thin subset of hyper-links Z ⊆ 2L minimizing c(Z)
c(dropU (Z)) .

• Let F := F ∪ Z and let U := U \ dropU (Z).

8. Return A STAP solution with full components corresponding to the hyper-links in F .

Hyper-TAP. It enumerates over all subsets S ⊆ R of at most γ terminals, and computes the cheapest
full component joining S. Notice that there are at most nγ such sets. Furthermore, for each subset
S, we can compute the cheapest full component joining S in polynomial time by solving an instance
of Steiner tree with constantly many terminals using the following result.

Lemma 2.3.3 (Dreyfus and Wagner [DW71]). There is an algorithm for Steiner tree which returns
the optimal Steiner tree and runs in time O(n3 · 3p), where p is the number of terminals.

For the remainder of the procedure the algorithm works with this Hyper-TAP instance and the
previously computed up-link solution U .

We iteratively improve the current solution by finding the best k-thin subset of hyper-links to add.
In particular, we find the k-thin subset of hyper-links Z which minimizes the ratio c(Z)

c(dropU (Z)) . This
can be done in polynomial time via dynamic programming, see Lemma 2.3.10.

Finally, since at least one up-link is dropped in each iteration of the while-loop, this algorithm runs
in polynomial time overall.

We now turn to analyzing the quality of the solution returned. This relies on the Decomposition
Theorem 3.2.3 for Hyper-TAP which we prove in Section 3.7.

With this Decomposition Theorem, we can immediately conclude that the relative greedy procedure
computes a (1+ln 2+ε)-approximation of the optimal γ-restricted Hyper-TAP solution by leveraging
the results of previous work (See [CN13b],[TZ22b] Theorem 6). This proves our main Theorem 2.0.2.

21

Proof of Theorem 2.0.2. We prove that for every ε > 0, Algorithm 7.1 returns a solution F of cost
at most (1 + ln 2 + ε)OPT .

As usual, OPT denotes the cost of the optimal solution to the original STAP problem. Let OPTγ

denote the cost of the optimal γ-restricted STAP solution. Notice that by taking ε′ = ε/2
1+ln 2+ε/2 ,

and γ = 2⌈1/ε
′⌉, we have that OPTγ ≤ (1 + ε′)OPT by Lemma 2.2.4.

By the Decomposition Theorem 3.2.3, the relative greedy procedure returns a solution F with cost
at most (1 + ln 2 + ε/2)OPTγ .

Hence our overall cost is at most

c(F) ≤ (1 + ln 2 + ε/2)(1 +
ε/2

1 + ln 2 + ε/2
)OPT = (1 + ln 2 + ε)OPT.

2.3.3 Effects of γ-restriction

In this section, we prove that, for any ε > 0, there is a large enough γ so that the cost of the optimal
γ-restricted solution to STAP costs at most (1+ ε) times the optimal cost of an unrestricted STAP
solution. This is an extension of the result of Borchers and Du [BD97] for Steiner trees.

Recall that a full component of a STAP solution (S, F), is a subtree of the solution where each leaf
is a terminal (that is, a vertex in R), and each internal node is in V \R. Also, recall that a STAP
solution is γ-restricted if each of its full components joins at most γ terminals.

Notice that finding a minimum cost 2-restricted STAP solution is simply the Weighted Tree Aug-
mentation Problem. We show that for γ large enough, the optimal γ-restricted STAP solution is
close (in cost) to the optimal unrestricted solution.

First, we recall the following result for Steiner trees. Given a Steiner tree solution, a full component
of this solution is a subtree whose leaves are terminals and whose non-leaves are non-terminals. A
γ-restricted Steiner tree is a solution whose full components contain at most γ terminals.

Theorem 2.3.4 (Borchers and Du [BD97]). Let ε > 0 and γ = 2⌈
1
ε
⌉. Fix any instance of Steiner

tree and let T ∗ be the optimal Steiner tree and Tγ be the optimal γ-restricted Steiner tree. Then we
have

c(Tγ)

c(T ∗)
≤ 1 + ε.

Now, we prove an analogous result for STAP. For an instance of STAP, let (S∗, F ∗) be the optimal
solution and (Sγ , Fγ) be the optimal γ-restricted solution.

Proof of Lemma 2.2.4. Let ε > 0. Then we show that for γ = 2⌈
1
ε
⌉, we have

c(Fγ)

c(F ∗)
≤ 1 + ε.

Let (S∗, F ∗) be the optimal STAP solution. Each of its full components (A∗
i , H

∗
i) is a tree joining

some set of terminals Ri ⊆ R.
Since (S∗, F ∗) is optimal, and (A∗

i , H
∗
i) is a full component, it must be the cheapest way to join

the nodes in Ri. That is, (A
∗
i , H

∗
i) is an optimal solution to the Steiner tree instance on the graph

(Ri ∪ (V \R), L), with terminals Ri.

22

By Theorem 2.3.4 above, there is a γ-restricted Steiner tree solution of cost at most (1 + ε)c(H∗
i).

Applying this to each full component of (S∗, F ∗) yields a solution of cost at most (1+ε)c(F ∗) which
only has full components joining at most γ terminals.

2.3.4 The Decomposition Theorem

In this section, we prove our main decomposition theorem (Theorem 3.2.3). In order to prove this
result, we will follow the methods of [TZ22b], and extend them from WTAP to Hyper-TAP. At a
high level, the argument is as follows. We will build a directed graph D whose vertices correspond
to the hyper-links ℓ ∈ F . For each up-link u ∈ U , we will choose a minimal set of hyper-links Fu

such that u ∈ dropU (Fu). Each set Fu will correspond to a directed path Au in D.

In [TZ22b], the authors show that based on the choices for the minimal sets Fu, the dependency
graph satisfies the following key properties, which allow for the selection Q ⊆ U and a partition of
F into the desired k-thin components.

1. The dependency graph is a branching.

2. Let (Z,A) be a connected component of the dependency graph. If the arc set of every directed
path in (Z,A) has a non-empty intersection with Au for at most k up-links u ∈ U , then Z is
(k + 1)-thin.

In [TZ22b], Theorem 5 shows how one can use these two properties to select Q ⊆ U and the
partition of F into the desired k-thin components, proving the Decomposition Theorem.

We argue that the same properties hold in the hyper-link setting. The crucial property that allows
us to extend the arguments from links to hyper-links is that if u is an up-link and ℓ is a hyper-link,
then the intersection of Pu and Tℓ is a subpath of Pu. Recall that Tℓ :=

⋃
a∈ℓ Pa,apex(ℓ).

We now describe how to construct for each u ∈ U a minimal set Fu such that u ∈ dropU (Fu).
Suppose u = (t, b) where t is an ancestor of b. We define vu to be the lowest ancestor of t, i.e., the
ancestor farthest away from the root r, such that Pu is covered by hyper-links in

Bvu := {ℓ ∈ F : apex(ℓ) is a descendant of vu}

i.e., Pu ⊆ ∪ℓ∈Bvu
Pℓ. Then we choose Fu ⊆ Bvu minimal such that Pu ⊆

⋃
ℓ∈Fu

Tℓ.

There is a natural ordering on the hyper-links in Fu. First, we make some observations about how
each hyper-link interacts with an up-link. Let Pu,ℓ := Pu \ ∪ℓ̄∈Fu\{ℓ}Tℓ̄

.

Lemma 2.3.5. For any up-link u, let ℓ ∈ Fu. Then Pu,ℓ is non-empty and the edge set of a path.

For ℓ1, ℓ2 ∈ Fu, we define ℓ1 ≺ ℓ2 if and only if the edges in Pu,ℓ1 appear before the edges of Pu,ℓ2

on the t− b path in T .

The arcs of the dependency graph are determined by the orderings on Fu for u ∈ U . For every
up-link u ∈ U , let ℓ1 ≺ · · · ≺ ℓq be the links in Fu. Then

Au := {(ℓ1, ℓ2), . . . , (ℓq−1, ℓq)}

The arcs of the dependency graph consist of the union of Au over all u ∈ U . We will now show that
the dependency graph has the two key properties which were introduced in [TZ22b], which allow
the selection of Q ⊆ U and a partition of F into the desired k-thin components.

23

First, we consider property (1). This property simply follows from the minimality of Fu for each
u ∈ U and has been shown in [CN13b].

Lemma 2.3.6 (Cohen and Nutov [CN13b]). The dependency graph D is a node-disjoint collection
of arborescences.

To prove property (2), we need the following lemma, which relies on the particular choice of minimal
Fu. Fix any connected component of the dependency graph (Z,A).

Lemma 2.3.7. Let ℓ1, ℓ2 ∈ Z with Vℓ1 ∩ Vℓ2 ̸= ∅. Then ℓ1 and ℓ2 have an ancestry relationship in
the arborescence (Z,A), i.e., either ℓ1 is an ancestor of ℓ2 or ℓ2 is an ancestor of ℓ1.

Lemma 2.3.7 has been shown in the context of WTAP in [TZ22b]. The proof extends verbatim to
the case of Hyper-TAP, so we don’t rewrite it here. Just as in [TZ22b], Lemma 2.3.7, along with
the property that Fu is 2-thin for each u ∈ U (which follows from the minimality of Fu) imply
property (2).

Lemma 2.3.8. Let k be a positive integer, and (Z,A) be a connected component of the dependency
graph. If every directed path in (Z,A) intersects at most k sets Au, then Z is (k + 1)-thin.

Thus, the dependency graph satisfies the 2 properties described earlier in the section. We can use
the identical technique as in [TZ22b] to select a set of up-links Q ⊆ U with c(Q) ≤ ε. We will
delete the arc sets Au for u ∈ Q from the dependency graph, and the connected components of the
remaining digraph will each be (k + 1)-thin. We reproduce the proof below.

Theorem 2.3.9. Given an instance of Hyper-TAP (T,L), suppose U is an up-link solution such
that the sets Pu are pairwise edge-disjoint for u ∈ U . Suppose F ⊆ L is any solution. Then for any
ε > 0, there exists a partition Z of F into parts so that:

• For each Z ∈ Z, Z is k-thin for k = ⌈1/ε⌉.

• There exists Q ⊆ U with c(Q) ≤ ε · w(U), such that for all u ∈ U \Q, there is some Z ∈ Z
with u ∈ dropU (Z). That is, U \Q ⊆

⋃
Z∈Z dropU (Z).

Proof. Let k := ⌈1ε⌉. We will construct an arc labeling for each connected component (Z,A) of the
dependency graph. The arcs in the same set Au will receive the same label.

For each directed path (Fu, Au) which begins at the root of the arborescence (Z,A), we set the
labels of the arcs in this path to be 0. For a directed path (Fu, Au) which does not begin at the
root, let ℓ be its starting node and suppose the arc entering ℓ has label j ∈ Z≥0. We set the labels
of arcs in Au to be j + 1. Since (Z,A) is an arborescence, this labeling is well-defined.

For i ∈ {0, . . . , k − 1}, let Qi ⊆ U be the set of up-links in U for which the arcs in Au have a label
j with j ≡ i (mod k). Since Q0, Q1, . . . , Qk−1 is a partition of U , the average cost of the sets Qi is
c(U)/k. Hence, the cheapest set Qi has cost at most c(U) ≤ c(U)/k, and we set Q := Qi.

Based on the choice of Q, we obtain a partition of F by removing from the dependency graph all
arcs in Au where u ∈ Q. Then, the links in the connected components of the resulting directed
graph form the partition Z of F . By the choice of labeling, every directed path in the dependency
graph after deleting these arcs intersects at most k−1 distinct sets Au. Therefore, by Lemma 2.3.8,
each part Z ∈ Z is k-thin as desired.

24

2.3.5 Dynamic Programming to find the best k-thin component

In this section, we prove that we can find the k-thin subset of hyper-links Z ⊆ L minimizing
c(Z)

c(dropU (Z)) in polynomial time using dynamic programming. A similar result was needed in [TZ22b].
However, in general Hyper-TAP, there may be exponentially many hyper-links, so we cannot enu-
merate over all

(|L|
k

)
sets efficiently. Thus, we again make use of the results in Section 2.3.3. In our

algorithm, we work with an instance of γ-restricted Hyper-TAP for some constant γ. Therefore,
there are at most O(nγ) hyper-links overall. This, along with the fact that we optimize over k-thin
subsets for a constant k, will be necessary for the efficiency of the dynamic program.

Recall that we seek to find the minimizer ρ∗ of c(Z)
c(dropU (Z)) over all k-thin subsets Z ⊆ L. Using

binary search, we can reduce this problem to deciding whether a given ρ is greater or less than
ρ∗ ∈ [0, 1].

For a given ρ and Z ⊆ L, define

slackρ(Z) := ρ · c(dropU (Z))− c(Z).

Notice that the question of whether c(Z)
c(dropU (Z)) ≤ ρ is equivalent to whether slackρ(Z) ≥ 0.

Lemma 2.3.10. The maximizer among all k-thin sets of hyper-links

max
Z⊆L
{slackρ(Z) : Z is k-thin}

can be found efficiently by dynamic programming.

Proof. The proof is an extension from [TZ22b] which proves the result for γ = 2. We denote by
Dv ⊆ V the set of all descendants of v in G, X[Dv] ⊆ X the set of hyper-links in X ⊆ L with all
endpoints in Dv, δX(Dv) ⊆ X the set of links with at least one endpoint in Dv and at least one
not in Dv.

The dynamic program maintains a triple {v, Y, x}:

• v ∈ V represents the subtree Dv we are considering.

• A set of hyper-links Y ⊆ δL(Dv) with |Y | ≤ k. These are the hyper-links that do not interact
solely with Dv, but nevertheless affect the choices in the subproblem rooted at v. However,
since we are seeking a k-thin set of hyper-links, and each member of δL(Dv) goes through v,
we have |Y | ≤ k.

• x ∈ {+,−}. Note that since the sets Pu are disjoint for u ∈ U , there is at most one up-link
in δU (Dv). If x = +, the k-thin set is required to cover the edges of Pu that are under v. If
x = −, there is no requirement.

We create a table T with an entry for each such triple. The dimensions of this table are T ⊆
V × 2L × {+,−}, and since |L| ≤ O(nγ), this table has polynomial size for any constant k.

We will proceed to fill this table from the leaves up to the root of the tree and use previously
computed entries to ensure that we can fill each entry in polynomial time.

Let
slackρ(Z, Y, v) := ρ · c(dropU [Dv](Z ∪ Y))− c(Z).

25

If x = − then

T [v, Y, x] := max{slackρ(Z, Y, v) : Z ⊆ L[Dv], Z ∪ Y is k-thin},

and if x = +, then T [v, Y, x] is the solution to the same optimization problem, with the additional
constraint that Z ∪ Y must cover the edges of the unique up-link going through v, if it exists. Let
Z(v, Y, x) be the associated maximizer. Notice that the answer to the original problem is in the
table entry T [r, ∅,−].
Fix an entry T [v, Y, x] and let the children of v be v1, v2, . . . , vm. We partition the problem into
computing Z[vi, Yi, x] for some choices of Yi and x. We enumerate to find the correct Yi for each
D[vi]. We use the following rule to partition Z ∪ Y :

• Zi := Z ∩ L[Dvi], which is the set of hyper-links that are contained fully in some Dvi

• Y := Y ∪ {ℓ ∈ Z : v ∈ Vℓ}, which is the set of hyper-links with at least one endpoint in some
Dvi and at least one endpoint outside of Dvi .

Note that the set Z ∪Y should be k-thin because we seek a k-thin solution. Since Tℓ contains v for
each ℓ ∈ Y we have |Y | ≤ k. We consider the following set Y which is the set of all feasible Y :

• |Y | ≤ k;

• Y ∪ δL(Dv) = Y ;

• Each hyperlink ℓ ∈ Y goes through vertex v;

• If x equals + and if the link u ∈ δU (Dv) interacts with some subtree Dvi , i.e at least one
endpoint of u is in some Dvi , then we have Y ∩ δL(Dvi) ̸= ∅.

Since |Y | ≤ k, we can bound the size of Y. For γ-restricted hyper-links, the choice of one hyper-link
is
∑γ

i=1

(
n
i

)
≤ γnγ for constant parameter γ. The size of Y satisfies |Y| ≤

(
γnγ

k

)
≤ γknγk = O(nkγ),

which is polynomially tractable. Thus, we can enumerate among all Y that satisfy the above
four conditions and we obtain all information we need before breaking our dynamic program into
sub-problems for Dvi .

Let’s fix some set Y ∈ Y, then we have

slackρ(ZY , Y, v) =
m∑
i=1

slackρ(Zi, Y ∩ δL(Dvi , vi)) + ρ ·
∑

ui∈DropU (Zi∪Y)

c(ui)− c(Y /Y).

To compute Zi, we need to determine whether (vi, Yi,+) is feasible. There are three cases:

• δU (Dvi) = ∅ : then (vi, Yi,+) is infeasible due to the previous definition, we only need to
compute Z(vi, Yi,−);

• The up-link ui only interacts with v in vertex set V/Dvi : then we need to compare if we want
to drop ui or not, i.e: if slackρ(Z

+
i , Yi, vi) + ρ ·w(ui) ≥ slackρ(Z

−
i , Yi, vi), then we will choose

Z(vi, Yi,+), otherwise we choose Z(vi, Yi,−).

• The up-link ui interacts with V/Dv, then we choose same sign for Z(vi, Yi, x) as (v, Y, x).

26

We enumerate over all choices for Y and choices of x for each child vi, and pick the best of these
cases. Thus, we can compute Z[v, Y, x] in polynomial time by relying on solutions to sub-problems
on the children of v. By proceeding from the leaves to the root, we can compute the value of
T [r, ∅,−] and the associated maximizer as desired.

2.3.6 A (1.5 + ε)-Approximate Local Search Algorithm

In this section, we show how to achieve an approximation algorithm for STAP with approximation
ratio (1.5 + ε). The main idea behind the improvement is to consider dropping links that were
added in previous iterations of the local search algorithm. Contrast this with Algorithm 3.3, which
obtains a 1+ ln(2)+ ε approximation by merely dropping the up-links in the initial 2-approximate
solution.

At a high level, the algorithm works as follows. Recall that we are given an instance of STAP
involving a graph G = (V,E) with a set of terminals R ⊆ V , a tree T = (R,E(T)) spanning R and
non-negative costs w : L→ R≥0. The algorithm will at all times maintain a feasible solution F ⊆ L
and witness sets Wf for f ∈ F such that U :=

⋃
f∈F Wf is feasible. Each witness set consists of

up-links and has size at most two.

Initially, we begin with an arbitrary feasible STAP solution F0, and its associated witness sets. In
each iteration, we add a collection of links to the solution along with their associated witness sets,
drop any up-links from witness sets which are not necessary for the feasibility of U , and finally
delete any links whose witness sets have become empty.

Since in Algorithm 3.3, we add a set of hyper-links to the current solution in each iteration, one
might initially try to associate a witness set to each hyper-link. However, a hyper-link joining k
terminals requires k up-links in its witness set, resulting in a worse approximation guarantee of
Hk + ε.

Therefore, a key idea is to show how we can construct witness sets of size at most 2 for each
link in a given STAP solution. We will use the idea behind the 2-approximate up-link solution in
Lemma 2.3.1 to obtain a natural choice for the witness sets for each link, obtained by choosing
the up-links responsible for covering the subpaths of the Euler tour containing f . Note that a key
difference in our setting is that a single up-link may be contained in the witness set of several links,
rather than just one as in the case of WTAP.

We now turn to defining how the witness sets are constructed. Given a STAP solution (S, F), we
assume for simplicity that (S, F) consists of a single full component (otherwise, we enact the same
procedure for each full component in the solution). Then (S, F) is a tree and admits an eulerian
tour traversing each edge in F exactly twice. This tour induces an ordering on the terminals in
S ∩R, say {r1, . . . , rk}. Notice that a particular link f ∈ F is traversed exactly twice; let’s say it is
used on the Euler subpath from ri to ri+1, and then again on the subpath from rj to rj+1 (where
we take rk+1 := r1). We define the witness set Wf to consist of the two up-links (ri, lca(ri, ri+1))
and (lca(rj , rj+1), rj+1).

With this choice of witness set for each link f ∈ F , it is clear that each set has at most two up-links.
For a set of links C ⊆ F , let UC be the union of all up-links corresponding to links in C. One can
show, following the same argument as the proof of Lemma 2.3.1, that the set of links C ⊆ F and
the set of up-links UC ⊆ L cover the same tree edges. This ensures that the union of all up-links
in the sets Wf for f ∈ F remains a feasible solution throughout the algorithm.

Now, we define a potential function Φ which maps a solution F and its witness sets to a non-negative

27

r

f1

f2

ℓ1 ℓ2

ℓ3

Figure 2.3: The above illustrates the construction of witness sets for each link in a given STAP solution.
The red tree is the tree to be augmented and the blue dashed lines are links in a feasible STAP solution F .
The witness sets corresponding to links f1 and f2 are Wf1 = {ℓ1, ℓ3} and Wf2 = {ℓ2, ℓ3} respectively.

real number.

Φ(F) :=
∑

f :|Wf |=1

w(f) +
3

2

∑
f :|Wf |=2

w(f).

We also define a weight function for the up-links in witness sets. For an up-link u in any Wf , we
define

w̄(u) :=
∑

f :u∈Wf

w(f)

|Wf |
.

We now turn to formally defining our algorithm (Algorithm 4.3). Recall that we are given an
instance of STAP involving a graph G = (V,E) with a set of terminals R ⊆ V , a tree T = (R,E(T))
spanning R and non-negative costs w : L→ R≥0.

We begin with an arbitrary STAP solution F0 and its associated witness sets. Our algorithm iterates
the following procedure. It finds the k-thin subset of hyper-links Z which maximizes w̄(dropU (Z))−
1.5w(Z), where U :=

⋃
f∈F Wf , and adds the links in these components to the current solution.

It then updates the collection of witness sets by adding the witness sets corresponding to the new
links, removing any up-links from witness sets which are covered by these new links, and shortening
up-links in witness sets to ensure that their coverages are disjoint. Finally, it deletes any link from
the solution F with an empty witness set. This procedure is iterated as long as the cost of the
current STAP solution drops by a sufficient amount in each iteration.

Before we turn to the analysis of the algorithm, we first show that we can efficiently find a k-thin
component maximizing w̄(dropU (Z))− 1.5w(Z).

Lemma 2.3.11. Given an instance of γ-restricted Hyper-TAP and an up-link solution U , there is a
polynomial time algorithm computing a k-thin collection of hyper-links maximizing w̄(dropU (Z))−
1.5w(Z).

Proof. Define a new Hyper-TAP instance with the same tree T and hyper-links L, but with a new
weight function w̃. For a hyper-link ℓ, if ℓ ∈ U , we define w̃(ℓ) := w(ℓ) and w̃(ℓ) := 1.5w(ℓ)

28

Algorithm 2: Local search algorithm for STAP

2.1 Input: A shadow-complete, metric-complete instance of STAP with graph G = (V,E),
tree T = (R,E(T)), links L = E \ E(T), and c : L→ R. Also a constant 1 ≥ ε > 0.

2.2 Output: A solution F ⊆ L with c(F) ≤ (1.5 + ε)OPT .
2.3

1. Compute an arbitrary STAP solution F ⊆ L. Construct witness sets Wf for each f ∈ F .

2. Let ε′ := ε/2
1.5+ε/2 and γ := 2⌈1/ε

′⌉.

3. For each S ⊆ R where |S| ≤ γ, compute the cheapest full component joining S and denote
the cost by cS .

4. Create an instance of γ-restricted Hyper-TAP on tree T = (R,E(T)) with hyper-links
L = {ℓS : S ⊆ R, |S| ≤ γ}. Set the cost of hyper-link ℓS to be cS .

5. Let k := ⌈8/ε⌉

6. Iterate the following as long as Φ(F) decreases in each iteration by at least a factor (1− ε
12n):

• Compute the k-thin subset of hyper-links Z ⊆ 2L maximizing
w̄(dropU (Z))− 1.5 · w(Z), where U :=

⋃
f∈F Wf .

• Update the witness sets by replacing each Wf with Wf \ dropU (Z).
• Update F by adding in all links contained in each full component of Z.

• Shorten up-links in Wf to ensure that their coverage is disjoint. If Wf = ∅ for some
f ∈ F , then remove f from F .

7. Return Return F .

otherwise. Now, applying Lemma 2.3.10 with ρ = 1 on this new instance Hyper-TAP returns the
desired k-thin maximizer.

Now we prove the correctness of the algorithm, i.e., that the returned solution is feasible for STAP.

Lemma 2.3.12. Both F and U :=
⋃

f∈F Wf are feasible STAP solutions before and after each
iteration of Algorithm 2. In particular, when the algorithm terminates, it returns a feasible STAP
solution.

Proof. By definition, F is initially a feasible solution. Also, U is a feasible solution initially by the
proof of Lemma 2.2.1.

A link is only removed from U when it is contained in dropU (Z) for some set of hyper-links Z ⊆ L
whose corresponding links C ⊆ L were added to the solution with their accompanying witness sets
Wf for f ∈ C. By definition of dropU (Z), the only up-links dropped from U are those not necessary
for the feasibility of U after the links in C are added. Since UC covers the same tree edges that C
does, the feasibility of U remains intact after each iteration of the algorithm.

For a fixed up-link u ∈ U , let Xu ⊆ L denote the set of links containing u in their witness set.
Notice that the set of tree edges covered by Xu is always a superset of the tree edges covered by u.
Indeed, initially this is true by construction, and no link in Xu is deleted so long as u ∈ U . Since
U is feasible throughout the algorithm, this implies that F is feasible as well.

29

We can apply the decomposition theorem to lower bound the progress made by the algorithm in
each iteration.

Lemma 2.3.13. In every iteration of Algorithm 4.3, there exists a ⌈8ε⌉-thin collection of hyper-links
Z ⊆ L such that

w̄(dropU (Z))− 1.5w(Z) ≥ 1

n

((
1− ε

8

)
w(F)− 1.5w(OPTγ)

)
.

Proof. Recall that U =
⋃

f∈F Wf consists of only up-links, and throughout the algorithm we
maintain that the coverage of these up-links is disjoint. Hence, we can apply Theorem 3.2.3 to U
using weights w̄ and the hyper-links in OPTγ to obtain a partition Z of OPTγ such that each part
is ⌈8ε⌉ - thin, and ∑

Z∈Z
w̄(dropU (Z)) ≥

(
1− ε

8

)
w̄(U) =

(
1− ε

8

)
w(F).

We show a lower bound on the average value of w̄(dropU (Z))−1.5w(Z) over all parts Z ∈ Z. Note
that

∑
Z∈Z w(Z) = OPTγ since Z is a partition, and n ≥ |Z| since . Using these and the above,

we have

1

|Z|
∑
Z∈Z

w̄(dropU (Z))− 1.5w(Z) ≥ 1

n

(
(1− ε/8)w(F)− 1.5w(OPTγ)

)
.

Since the average value is lower bounded as above, there must be some subset Z of hyper-links
satisfying

w̄(dropU (Z))− 1.5w(Z) ≥ 1
n

(
(1− ε/8)w(F)− 1.5w(OPTγ)

)
, as desired.

This allows us to bound the number of iterations performed by the algorithm in terms of the initial
and final potentials, yielding a polynomial runtime since w(F0) ≤ w(L).

Lemma 2.3.14. Algorithm 4.3 runs for at most ln(3/2·w(F0)
w(OPT)) · (

12n
ε) iterations.

Proof. The potential of the solution F initially is at most Φ(F) ≤ 3
2w(F0). The potential of F

never decreases below w(OPT). Hence, since the potential decreases in each iteration by at least
a (1− ε

12n) factor, we have that the number of iterations is bounded above by

log(1− ε
12n

)−1

(3w(F0)

2w(OPT)

)
=

ln
(

3w(F0)
2w(OPT)

)
ln(1− ε

12n)
−1
≤ ln

(3w(F0)

2w(OPT)

)
· 12n
ε

where we used ln(1 + x) ≤ x for x > −1.

Finally, we show that the cost of the returned solution is small relative to the optimum.

Lemma 2.3.15. Algorithm 2 returns a feasible STAP solution which costs at most (1.5+ ε) times
the cost of the optimal STAP solution.

30

Proof. Denote by OPT the optimal STAP solution and by OPTγ the optimal γ-restricted STAP
solution.

Using Lemma 2.3.13, we can show that c(F) ≤ (1.5 + ε
2)OPTγ . Indeed, upon termination,

there must be no local move which decreases the potential by at least a factor (1 − ε
12n). Thus,

w̄(dropU (Z))−1.5w(Z) < ε
12nΦ(F) for any ⌈8/ε⌉-thin set of hyper-links Z ⊆ L, and by Lemma 2.3.13,

this implies (
1− ε

8

)
w(F)− 1.5w(OPTγ) <

(ε
12

)
Φ(F) ≤

(ε
8

)
w(F).

Rearranging, this becomes (1− ε
4)w(F) ≤ 1.5w(OPTγ). Hence w(F) ≤ (1.5)(1

1−ε/4)w(OPTγ). For

ε < 1, this is at most (1.5 + ε/2)w(OPTγ) as desired.

Now, by Theorem 2.2.4 and our choice of γ, we have c(OPTγ) ≤ (1+ ε′)c(OPT). Combining these
inequalities, we have

c(F) ≤ (1.5 +
ε

2
)(1 + ε′)c(OPT) = (1.5 +

ε

2
)(1 +

ε/2

1.5 + ε/2
)c(OPT) = (1 + ε)c(OPT).

31

Chapter 3

The Steiner Connectivity
Augmentation Problem

In this chapter, we focus on two related problems. This is based on joint work with Daniel Hathcock.

Problem 3.0.1 (k-Steiner Connectivity Augmentation Problem). We are given a graph G =
(V,E ∪ L) and a subset of terminals R ⊆ V such that H := (V,E) has k edge-disjoint paths
between every pair of vertices in R. We are also given a cost function c : L→ R≥0.

The goal is to select S ⊆ L of cheapest cost so that the graph (V,E ∪ S) has k + 1 pairwise
edge-disjoint paths between all pairs of nodes in R.

There is another, simpler problem which is a Steiner generalization of WCAP. In the standard
WCAP problem, we can only add links between pairs of vertices in the given graph. What if we are
allowed to use links which join nodes outside the graph to be augmented? Utilizing these Steiner
vertices can yield cheaper augmentations. As such, we define the Steiner Augmentation of a Graph
problem (k-SAG) as follows.

Problem 3.0.2 (k-Steiner Augmentation of a Graph). We are given a k-edge-connected graph
H = (R,E), which is a subgraph of G = (V,E ∪̇ L). The links L have non-negative costs
c : L→ R≥0.

The goal is to select S ⊆ L of cheapest cost so that the graph H ′ = (V,E ∪ S) has k + 1 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

The STAP problem studied in Chapter 2 corresponds to the k = 1 case of k-SAG. As discussed
there, this yields a 1.5 + ε approximation for k-SAG for all odd k.

It also yields an improved approximation for 1-SCAP since k-SAG and k-SCAP are equivalent
when k = 1. This unification ceases for higher k, making the higher connectivity setting much
more interesting.

In this chapter, we give the first approximation algorithm with approximation ratio better than
2 for 2-SCAP, and for k-SAG for any k. To do this we introduce and solve the Steiner Ring
Augmentation Problem (SRAP).

Problem 3.0.3 (Steiner Ring Augmentation Problem). We are given a cycle H = (V (H), E),
which is a subgraph of G = (V,E ∪̇ L). The links L have non-negative costs c : L → R≥0.
Furthermore, we are given a set of terminals R ⊆ V (H).

32

The goal is to select S ⊆ L of minimum cost so that the graph H ′ = (V,E ∪ S) has 3 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

Figure 3.1: A SRAP instance where the black edges denote the given cycle, the dashed edges are the links,
and the red links form a feasible solution. The shaded nodes are the terminals R.

In terms of approximability, the Steiner Ring Augmentation Problem captures both CAP and STAP
as special cases, in the sense that an α-approximation for SRAP implies the same guarantee for
both CAP and STAP. We show that it also implies improved approximation algorithms for 2-SCAP
and k-SAG.

Lemma 3.0.4. If there is an α-approximation for SRAP, then there is an α-approximation for 2-
SCAP. If there is an α-approximation for SRAP when R = V (H), then there is an α-approximation
for k-SAG.

Our main theorem is an improved approximation algorithm for SRAP.

Theorem 3.0.5. There is a (1 + ln 2 + ε)-approximation algorithm for SRAP.

The ultimate goal of this line of work would be to achieve a better-than-2 approximation algorithm
for k-SCAP for general k. Our result on SRAP implies an improved approximation for this problem
when k = 2.

Corollary 3.0.6. There is a (1+ ln 2+ ε)-approximation algorithm for the 2-Steiner Connectivity
Augmentation Problem.

The challenge of obtaining a result for k-SCAP when k ≥ 3 is that the cuts to be covered are no
longer necessarily minimum cuts in the given graph. Thus, there is no way to represent these in a
cactus or ring structure, and new techniques would have to be developed to deal with this case.

However, in the case of k-SAG, we can replace H with a cactus, and subsequently a ring without
changing the structure of its minimum cuts. Hence, the k-SAG problem ultimately reduces to
the special case of SRAP where all cycles nodes are terminals. In this case, we can employ the
local search methodology introduced by Traub and Zenklusen [TZ22c] to achieve an improved
approximation ratio of (1.5 + ε).

Theorem 3.0.7. There is a (1.5+ ε)-approximation algorithm for SRAP when R = V (H). Hence
there is a (1.5 + ε)-approximation algorithm for the Steiner Augmentation of a Graph problem.

33

3.1 Preliminaries

Suppose G = (V,E) is a graph with vertex set V and edge set E. For a non-empty subset of vertices
C ⊊ V , the cut δ(C) consists of all edges in E with one endpoint in C. For a subset X ⊆ E, we
denote by δX(C) := δ(C) ∩X. A cut C is a k-cut if |δ(C)| = k.

The edge-connectivity λ(u, v) between a pair of vertices u, v ∈ V is the maximum number of edge-
disjoint paths between u and v in G. Equivalently, λ(u, v) = λ(v, u) is the minimum cardinality of
a cut δ(C) with u ∈ C and v ̸∈ C. A graph is said to be k-edge-connected if λ(u, v) ≥ k for all
pairs u, v ∈ V . Given a subset of terminals R ⊆ V , we say that G is Steiner k-edge-connected on
R if λ(u, v) ≥ k for all pairs of terminals u, v ∈ R.
Given a Steiner k-edge-connected graph G = (V,E) on terminals R, let r ∈ R, and define

C′′ = {C ⊆ V \ r : |δ(C)| = k,C ∩R ̸= ∅}

to be the family of k-cuts of G which separate some terminal from r. We call the cuts in C
dangerous cuts.

The k-SCAP problem is a hitting set problem where the ground set is the collection of links L,
and the sets are δ(C) where C ∈ C′′. That is, a set of links which is a solution to this hitting set
problem will cause the graph to become Steiner (k + 1)-edge-connected. The link ℓ “covers” the
dangerous cuts C with ℓ ∈ δ(C).

Problem 3.0.3 (Steiner Ring Augmentation Problem). We are given a cycle H = (V (H), E),
which is a subgraph of G = (V,E ∪̇ L). The links L have non-negative costs c : L → R≥0.
Furthermore, we are given a set of terminals R ⊆ V (H).

The goal is to select S ⊆ L of minimum cost so that the graph H ′ = (V,E ∪ S) has 3 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

We refer to the nodes in R as terminals, and the nodes in V \R as Steiner nodes. We will also
refer to H as the ring to distinguish it from a generic cycle. It will be convenient to fix a root
r ∈ R of the ring and an edge er ∈ E incident on r.

We now introduce some terminology which allows us to be phrase the SRAP problem as a covering
problem on a collection of ring-cuts only. Indeed, given the ring H = (V (H), E), denote the set of
min-cuts of H as:

C′ = {C ⊆ V (H) \ r : |δE(C)| = 2}.

Since we are only interested in connectivity between the terminals, we only need to cover the
subfamily of C′ which separates terminals.

Let
C = {C ⊆ V (H) \ r : |δE(C)| = 2, C ∩R ̸= ∅}.

We call the cuts in C dangerous ring-cuts.

We will use a similar notion of “full components” as introduced in Ravi, Zhang and Zlatin [RZZ23]
for STAP. Consider any solution S ⊆ L to SRAP.

Definition 3.1.1. A full component of a SRAP solution S, is a maximal subtree of the solution
where each leaf is a ring node (that is, a vertex of V (H)), and each internal node is in V \ V (H).

34

Any link-minimal SRAP solution can be uniquely decomposed into link-disjoint full components.
We say that a full component “joins” the ring nodes that it contains.

Definition 3.1.2. Let S be a solution to SRAP. We say that a set A ⊆ V (H) is joined by S if
there is a full component with leaves A.

Definition 3.1.3. We say that a cut C ∈ C is covered by a solution S if A∩C ̸= ∅ and A∩ C̄ ̸= ∅
for some subset of ring nodes A which are joined by a full component of S.

Hence, we can think of the SRAP problem as the problem of hitting the dangerous ring-cuts with
full components.

Lemma 3.1.4. A solution S is feasible for SRAP iff all dangerous ring-cuts are covered by S.

This motivates the definition of the Hyper-SRAP problem: We are given a ring H = (V (H), E)
with terminals R ⊆ V (H), a root vertex r ∈ R, and a collection of hyper-links L ⊆ 2V (H) with
non-negative costs c : L → R≥0.

Let C = {C ⊆ V (H) \ r : |δE(C)| = 2, C ∩ R ̸= ∅} be the set of dangerous ring-cuts, i.e. the set
of min-cuts of the ring H which separate some terminal from r. A cut C ∈ C is covered by a
hyper-link ℓ if ℓ ∩ C ̸= ∅ and ℓ ∩ C̄ ̸= ∅. The Hyper-SRAP problem is to find a minimum cost
subset of hyper-links so that all cuts in C are covered.

We will use the notion of the hyper-link intersection graph. First, we define what it means for two
hyper-links to be intersecting.

Definition 3.1.5. Let ℓ and ℓ′ be a pair of hyper-links. Let (v1, . . . , vk) be a sequence of vertices
of ℓ∪ ℓ′ obtained by traversing the ring (in either direction), where we take vk+1 := v1. Then ℓ and
ℓ′ are intersecting if there are vertices vi1 , vi2 , vi3 , vi4 with i1 < i2 < i3 < i4 and vi1 , vi3 ∈ ℓ and
vi2 , vi4 ∈ ℓ′.

Given an instance of Hyper-SRAP with ring H = (V (H), E) and hyper-links L, we define the
hyper-link intersection graph Γ as follows. For each hyper-link ℓ ∈ L there is a node vℓ. Two nodes
vℓ1 and vℓ2 are adjacent in the hyper-link intersection graph if and only if ℓ1 and ℓ2 are intersecting
hyper-links. For ring vertices u, v ∈ V (H), we say that there is a path from u to v in Γ if there is
a path in Γ from a hyper-link containing u to a hyper-link containing v.

It turns out that a solution S to Hyper-SRAP is feasible if and only if there is a path between every
pair of terminals in the hyper-link intersection graph when restricted to S. The following lemma
is proved in § 3.6.

Lemma 3.1.6. Suppose (H,L, R) is an instance of Hyper-SRAP with root r and intersection graph
Γ. Then S ⊆ L is feasible iff for each terminal r′ ∈ R, there is a path between r and r′ in the
hyper-link intersection graph restricted to S.

Definition 3.1.7. We say that a full component is γ-restricted if it joins at most γ ring nodes.
We say that a solution to SRAP is γ-restricted if it uses only γ-restricted full components.
Analogously, we say an instance of Hyper-SRAP is γ-restricted if each hyper-link has size at most
γ.

Similar to the approach developed in [RZZ23] for STAP, we can work with γ-restricted solutions
to SRAP while losing an arbitrarily small constant in the approximation ratio. This follows from
a result of Borchers and Du for Steiner trees [BD97].

35

Lemma 3.1.8. For an instance of SRAP, let S∗ be the optimal solution and Sγ be the optimal

γ-restricted solution, where γ(ε) = 2⌈
1
ε
⌉ for some ε > 0. Then

c(Sγ)
c(S∗) ≤ 1 + ε.

Recall that the minimum cost Steiner tree problem can be solved in polynomial time when the
number of terminals is constant.

Theorem 3.1.9 (Dreyfus and Wagner [DW71]). The minimum Steiner tree problem can be solved
in time O(n3 · 3p) where p is the number of terminals.

Because Lemma 3.1.4 shows that the feasibility of a solution only depends on the nodes that are
joined by full components of S, we can effectively disregard the Steiner nodes outside the ring and
observe that any instance of SRAP is equivalent to an instance of Hyper-SRAP in which the cost of
a hyper-link A is the minimum cost Steiner tree connecting A in the graph (A∪ (V \V (H)), L). By
Lemma 3.1.8, and Theorem 3.1.9, we can perform this reduction from an arbitrary SRAP instance
to an instance of γ-restricted Hyper-SRAP in polynomial time while only losing a factor of (1 + ε)
in the approximation ratio.

Finally, we will make use of directed solutions to the SRAP problem. If F⃗ is a collection of directed
links between pairs of vertices of the ring, then a dangerous ring-cut C ∈ C is covered by F⃗ if
δ−
F⃗
(C) ̸= ∅, i.e. if there is an arc in F⃗ which enters C. Then F⃗ is a feasible directed solution if

all dangerous ring-cuts are covered by F⃗ . Analogously, if S is a set of undirected links and F⃗ is a
set of directed links then we will say that S ∪ F⃗ is a feasible mixed solution if every dangerous
ring-cut is covered by S or by F⃗ .

3.2 Technical Overview

The main contribution of this article is to prove Theorem 3.0.5.

Theorem 3.0.5. There is a (1 + ln 2 + ε)-approximation algorithm for SRAP.

We show this implies improved approximation guarantees for both 2-SCAP and k-SAG. Recall that
in the k-SCAP problem, we are given a graph H which is Steiner k-edge-connected on the terminal
set R. We want to augment this graph by including additional links of minimum cost so that there
exists k + 1 pairwise edge-disjoint paths between every pair of terminals. This is equivalent to
covering the dangerous cuts of H with a minimum cost set of links.

Note that if k is larger than the global edge-connectivity of H, then there may be exponentially
many dangerous cuts. Indeed even when |R| = 2, the number of minimum {s, t}-cuts in a graph G
on n nodes may be exponential in n. This shows that, unlike in global connectivity augmentation,
the set of cuts to be covered in the k-SCAP problem cannot be represented by a cactus structure
which is efficiently computable. Although it is true that there are polynomially many dangerous
cuts up to containing the same subset of terminals [DV94], this is not sufficient for our purposes.

However, in the case of k = 2, we show that we may take H to be a globally 2-edge-connected
graph rather than merely Steiner 2-edge-connected. This allows us to compactly represent the cuts
to be covered by a cactus on a set of nodes, some of which are terminals. We then use the technique
introduced by Gálvez et. al. [GGJAS21] to replace the cactus with a ring by adding in links of 0
cost. This bring the problem into the SRAP framework. In the case of k-SAG, we are guaranteed
that H is k-edge-connected so we can directly replace H with a cactus with the same cut structure.
This yields:

36

Lemma 3.0.4. If there is an α-approximation for SRAP, then there is an α-approximation for 2-
SCAP. If there is an α-approximation for SRAP when R = V (H), then there is an α-approximation
for k-SAG.

In order to prove Theorem 3.0.5, we give a relative greedy algorithm which follows the methodology
developed in [TZ22a] for the Weighted Ring Augmentation Problem. We first summarize this
method and then illustrate the challenges that arise in the Steiner setting, and how we deal with
them.

First we provide an overview of the algorithm which achieves an approximation ratio of (1+ln 2+ε)
for WRAP. The algorithm is a relative greedy algorithm which begins by computing an initial
directed solution which is highly structured, then iteratively improves upon this solution through
local moves. In each local move, a collection of links is added to the solution, and a collection of
directed links are dropped from the initial solution. The algorithm repeats this process until the
initial solution becomes empty.

For the initial structured solution, Traub and Zenklusen show that, after performing a “shadow
completion” of the instance, it is possible to compute in polynomial time an initial 2-approximate
directed solution to WRAP which is a planar r-out arborescence F⃗ reaching all other vertices in the
ring. This arborescence structure gives a condition for when a directed link (u, v) is allowed to be
dropped from this solution such that a) feasibility of the mixed solution is maintained throughout
the algorithm, and b) in each iteration of the algorithm, progress is made in terms of reducing the
overall cost.

To achieve the latter property, Traub and Zenklusen prove a decomposition theorem with respect
to F⃗ and the optimal undirected solution S∗ which allows them to show that progress is made in
each step.

Our relative greedy algorithm for SRAP follows this framework. However, there are several key
ingredients which are needed to obtain the result in the Steiner setting.

First, we need an initial structured 2-approximate solution to SRAP. Note that in the SRAP
problem, unlike in the standard Weighted Ring Augmentation Problem, the optimal solution may
use links between Steiner nodes outside the ring in order to increase the connectivity between pairs
of terminals in the ring. Nonetheless, using analagous techniques to [RZZ23] for STAP, we can
obtain a 2-approximate solution consisting of directed links only between ring nodes. Essentially,
after performing a metric completion step, taking a directed cycle on the nodes joined by each full
component of the optimal solution yields a directed solution of at most 2 times the cost. Since, the
optimal directed solution to SRAP can be found in polynomial time, such a 2-approximate directed
solution can be found efficiently. Then, by iteratively shortening this solution as in [TZ22a], we
can find a 2-approximate directed arborescence solution F⃗1 for SRAP in polynomial time.

However, this is not sufficient because we cannot prove a decomposition theorem with respect to F⃗1

in our Steiner setting. Instead, we show in § 3.4 that, after a finite sequence of metric completion
and shadow completion steps are performed to obtain a “complete” instance, there is always a
directed 2-approximate arboresence solution which is only incident on terminals.

Theorem 3.2.1. There is a polynomial time algorithm for SRAP which yields a directed solution
F⃗ of cost at most 2OPT such that:

1. F⃗ is only incident on the terminals R

2. (R, F⃗) is an r-out arborescence.

37

3. (R, F⃗) is planar when V (H) is embedded as a circle in the plane.

4. For any v ∈ V , no two directed links in δ+
F⃗
(v) go in the same direction along the ring.

We call a directed solution which satisfies the conditions in Theorem 3.2.1 anR-special directed so-
lution. The proof of Theorem 3.2.1 is significantly more involved than the directed 2-approximation
for standard WRAP. At a high level, we begin with the 2-approximate directed solution consisting
of a collection of directed cycles on the ring nodes, inspired by [RZZ23] and discussed above. Then,
we prove a “cycle merging lemma” which allows us to iteratively merge these cycles to eventually
obtain a feasible directed solution which is a single directed cycle of at most the cost. Once we have
a solution of this form, we can shortcut over the Steiner nodes in the ring to obtain a directed cycle
solution which only touches terminals. We can then iteratively shorten this solution as in [TZ22a]
to yield the arborescence structure guaranteed in Theorem 3.2.1.

An R-special directed solution of this form is necessary because it allows us to leverage a decom-
position result on directed solutions with respect to the optimum. Because of the decomposition
result, it can be argued that every iteration of the algorithm will find an improving local move as
long as the current solution is expensive. Traub and Zenklusen prove a decomposition result of
this kind to bound the approximation ratio of the relative greedy algorithm for WRAP [TZ22a].
In our setting, we need to extend the decomposition theorem to hyper-links which may join an
arbitrary number of vertices in the ring. First we need to define the notion of an α-thin collection
of hyper-links. Recall that C′ is the set of minimum cuts of the ring H which do not include the
root.

Definition 3.2.2. A collection of hyper-links K ⊆ L is α-thin if there exists a maximal laminar
subfamily D of C′ such that for each C ∈ D, the number of hyper-links in K which cover C is at
most α.

Theorem 3.2.3 (Decomposition Theorem). Given an instance of Hyper-SRAP (H = (V (H), E), R,L),
suppose F⃗0 is an R-special directed solution and S ⊆ L is any solution. Then for any ε > 0, there
exists a partition Z of S into parts so that:

• For each Z ∈ Z, Z is α-thin for α = 4⌈1/ε⌉.

• There exists Q ⊆ F⃗0 with c(Q) ≤ ε · c(F⃗0), such that for all f ∈ F⃗0 \Q, there is some Z ∈ Z
with f ∈ dropF⃗0

(Z). That is, F⃗0 \Q ⊆
⋃

Z∈Z dropF⃗0
(Z).

In the above theorem, for a collection of hyper-links K and an R-special directed solution F⃗0, the
notation dropF⃗0

(K) denotes a set of directed links from F⃗0 which can be dropped while preserving

feasibility of F⃗0 ∪K. For each directed link f ∈ F⃗ , we describe a collection of dangerous ring-cuts
for which f is “responsible”, denoted R(f) and defined formally in § 3.6.

Then
dropF⃗0

(K) := {f ∈ F⃗ : |δK(C)| ≥ 1 for all C ∈ RF⃗0
(f)}

is the set of all directed arcs such that the cuts they are responsible for are covered by K.

This definition was used by Traub and Zenklusen [TZ22a] for WRAP. They also prove an equivalent
characterization showing that a directed link (u, v) can be dropped if and only if v is connected
to a “v-good” vertex in link-intersection graph restricted to K. In [TZ22a], a v-good vertex is a
vertex which is not a descendant of v with respect to the initial 2-approximate arborescence.

38

Because our initial directed solution F⃗0 only touches terminals, we can prove a similar characteri-
zation, where we have adapted the definitions of v-good and v-bad to our setting.

Definition 3.2.4. Let v ∈ R and consider the maximal interval Iv ⊆ V (H) containing v such that
Iv does not contain a terminal which is a non-descendant of v in (R, F⃗). We say that the nodes in
Iv are v-bad, and all nodes in V (H) \ Iv are v-good.

We use these new definitions to prove the following.

Lemma 3.2.5. For a collection of hyper-links K, a directed link (u, v) is in dropF⃗ (K) if and only
if Γ(K) contains a path from a hyper-link containing v to a hyper-link containing a v-good vertex
w.

Note that Lemma 3.6.6 does not necessarily hold if F⃗0 is not R-special, since a directed link entering
a Steiner node could be droppable even if K has no hyper-links containing it. We also show that an
R-special solution F⃗0 can be augmented with artificial links to obtain a V (H)-special solution F⃗ ′

so that the set of v-bad nodes in F⃗0 correspond to the set of descendants of v in the arborescence
F⃗ ′.

er

r

a

c

d

b

e

f

Figure 3.2: An example of an R-special solution with R = {r, a, b, c, d} and its extension to an artificial V (H)-
special solution. The artificial links are purple. The r-bad interval is always V (H). The a-bad interval is
shown in cyan. The b-bad and c-bad intervals are green, and the d-bad interval is dark blue.

This characterization of when a directed arc is droppable is used to prove Theorem 3.2.3. We follow
the approach in [TZ22a] which proves the result when all hyper-links have size 2 and R = V (H).
We construct a “dependency graph” which allows us to partition the links of S into the desired α-
thin pieces. In our hyper-link setting, the nodes of the dependency graph correspond to “festoons”
composed of hyper-links rather than festoons of links of size 2. See § 3.7.

Lemma 3.1.8 and Theorem 3.1.9 allow us to convert a given instance of SRAP into an equivalent
Hyper-SRAP instance efficiently. It also ensures that each local move of the algorithm runs in
polynomial time. In each local move, the algorithm chooses amongst all α-thin collections of
hyper-links K, the choice which minimizes the ratio between the cost of the hyper-links in K, and
the cost of the directed links which will be dropped as a result of adding K to the solution. We
show that this operation can be performed in polynomial time as long as all hyper-links have size
at most γ.

Theorem 3.2.6. Given an instance of γ-restricted Hyper-SRAP, an R-special directed solution F⃗0

and an integer α ≥ 1, there is a polynomial time algorithm which finds a collection of hyper-links

39

er

r

er

r

Figure 3.3: An example of a SRAP instance on the left, where all three undirected links have cost 1. The
grey nodes are terminals. The completed instance is shown on the right, where the blue links have cost 1 and
the orange links have cost 2 (only the directed links are shown). The dashed blue arcs form a feasible directed
solution of cost 3, but there is no R-special solution of cost at most 3.

K minimizing
c(K)

c(dropF⃗0
(K))

over all α-thin subsets of hyper-links.

Theorems 3.2.1, 3.2.3, and 3.2.6 together are essentially enough to employ a relative greedy strategy
to obtain a (1 + ln 2 + ε)-approximation for SRAP. Beginning with an R-special 2-approximate
directed solution, we iteratively add to this solution a greedily chosen α-thin collection of hyper-
links in each step. When a particular collection of hyper-links K is chosen to be added, the directed
links in dropF⃗0

(K) are dropped from F⃗0, and this process is repeated until F⃗0 becomes empty. The
relative greedy algorithm is described in § 3.5.

Additionally, in the case that all ring nodes are terminals, we can use the local search framework
introduced in [TZ22c] to give an algorithm with an improved approximation guarantee of (1.5+ ε).
Together with Lemma 3.0.4, this yields:

Theorem 3.0.7. There is a (1.5+ ε)-approximation algorithm for SRAP when R = V (H). Hence
there is a (1.5 + ε)-approximation algorithm for the Steiner Augmentation of a Graph problem.

The key idea in the improvement is to not only consider dropping links from the initial directed
solution, but to drop undirected links which were added in previous iterations by associating to
each undirected link a witness set of directed links which indicate when it can be dropped.

We are able to do this in the case that V (H) = R because in this case, any feasible directed solution
can be transformed into an R-special solution of at most the cost. However, this is not the case for
general SRAP (see Figure 3.7).

This illustrates why it may be surprising that Theorem 3.2.1, our key technical contribution, holds.
While it is not true that any feasible directed solution can be made R-special, the proof of The-
orem 3.2.1 shows that a directed solution which consists of a collection of directed cycles on the
ring can be made R-special, and this is enough to prove the desired guarantees with respect to the
optimum.

40

3.3 Reductions to SRAP

In this section, we prove Lemma 3.0.4.

Lemma 3.0.4. If there is an α-approximation for SRAP, then there is an α-approximation for 2-
SCAP. If there is an α-approximation for SRAP when R = V (H), then there is an α-approximation
for k-SAG.

Consider an instance of the 2-SCAP problem, where we are given a graph H which is Steiner 2-
edge-connected for a set of terminals R, and recall that C′′ = {C ⊆ V \ r : |δ(C)| = 2, C ∩ R ̸= ∅}
is the set of dangerous cuts to be covered.

We will show that the connected component of H which contains R can be assumed to be genuinely
2-edge-connected, rather than merely Steiner 2-edge-connected.

Lemma 3.3.1. We may assume without loss of generality that the connected components of H con-
sist only of isolated Steiner nodes, and a single 2-edge-connected loopless component H ′ containing
all of the terminals R.

Proof. First, since H contains a path between every pair of terminals, there must be a single
connected component containing R, call it H ′. So all other connected components contain only
Steiner nodes.

Now consider a connected component K of Steiner nodes. Observe that any dangerous cut C of
size |δE(C)| = 2 separating terminals must either contain K, or be disjoint from K. Otherwise, the
cut C ∪K is still dangerous, but |δE(C ∪K)| < 2, contradicting the Steiner 2-edge-connectivity of
H. Hence, K may be contracted into a single isolated Steiner node.

Now, if H ′ contains any cut K of size |δE(K)| = 1, it cannot separate terminals, so assume
K ∩ R = ∅. Denote the edge crossing this cut as δE(K) = {(u, v)} with u ∈ K, v ̸∈ K. Similarly
to above, we observe that any dangerous cut C containing v must contain K. Otherwise, the cut
C ∪K is still dangerous, but |δE(C ∪K)| < 2. So, again, we may contract K ∪ v without changing
the structure of cuts to be covered.

Such a contraction removes at least one cut of size 1, so we may repeat this iteratively until no cuts
of size 1 remain. This leaves us with H ′ being a 2-edge-connected graph (and observe that neither
of the contraction operations we performed could have introduced a loop).

With the above lemma, it is easy to see that any dangerous cut C of H is obtained by taking a
dangerous cut of H ′ (that is, a 2-cut C ⊆ V (H ′) which separates terminals), and adding in some
Steiner nodes in V \V (H ′). At a high level, this allows us to replace H ′ with a different graph with
the same cut structure without meaningfully changing the problem.

We can now apply an easy extension of a theorem of Dinits, Karzanov, and Lomonosov on the
cactus representation of the min-cuts of a graph.

Theorem 3.3.2 (Cactus representation of min-cuts, [DKL76]). Let G = (V,E) be a loopless graph.
There is a cactus Ĝ = (U,F) and a map ϕ : V → U such that for every 2-cut of Ĝ with shores U1

and U \U1, the preimages ϕ−1(U1) and ϕ
−1(U \U1) are the two shores of a min-cut in G. Moreover,

every min-cut of G arises in this way.

The following strengthening of Theorem 3.3.2 immediately follows by letting u ∈ U be in R′ if and
only if ϕ−1(u) contains a node of R.

41

Corollary 3.3.3. Let G = (V,E) be a loopless graph with terminals R ⊆ V . There is a cactus
Ĝ = (U,F), a set R′ ⊆ U , and a map ϕ : V → U such that for every 2-cut of Ĝ separating nodes
of R′, with shores U1 and U \ U1, the preimages ϕ−1(U1) and ϕ−1(U \ U1) are the two shores of a
min-cut in G which separates terminals. Also, every min-cut in G separating terminals arises in
this way.

Applying Corollary 3.3.3 to H ′, we may replace H ′ by a cactus Ĥ ′ such that there is a correspon-
dence between 2-cuts which separate terminals in H ′ and 2-cuts in which separate nodes of R′ in
Ĥ ′. All links in G incident to a node v of H ′ will now be incident to the corresponding node ϕ(v)

in Ĥ ′. Thus, there is a correspondence between feasible solutions to 2-SCAP and the problem of
2-SCAP where the connected component of H containing R is a cactus. In particular, we have
shown that 2-SCAP reduces to the following problem:

Problem 3.3.4 (Steiner Augmentation of a Cactus). We are given a cactus H = (V (H), E), which
is a subgraph of G = (V,E∪̇L). The links L have non-negative costs c : L→ R≥0. There is also a
set of terminals R ⊆ V (H).

The goal is to select S ⊆ L of cheapest cost so that the graph H ′ = (V,E ∪ S) has 3 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

By the addition of zero-cost links (c.f Theorem 4 in [GGJAS21]), we can unfold the cactus further
so that H is a cycle. This is precisely the Steiner Ring Augmentation Problem, which we restate
here:

Problem 3.0.3 (Steiner Ring Augmentation Problem). We are given a cycle H = (V (H), E),
which is a subgraph of G = (V,E ∪̇ L). The links L have non-negative costs c : L → R≥0.
Furthermore, we are given a set of terminals R ⊆ V (H).

The goal is to select S ⊆ L of minimum cost so that the graph H ′ = (V,E ∪ S) has 3 pairwise
edge-disjoint paths between u and v for all u, v ∈ R.

Each of these reductions can be performed in polynomial time. And, since the structure of danger-
ous cuts to be covered remains the same, any solution to the 2-SCAP instance gives rise a solution
of the same cost in the SRAP instance, and every solution in the SRAP instance arises in such a
way. This proves the first half of Lemma 3.0.4.

The second half of Lemma 3.0.4, the reduction from k-SAG, follows in an almost identical (albeit
simpler) fashion. We replace the k-edge-connected graph H with a cactus Ĥ using Theorem 3.3.2,
such that there is a correspondence between the min-cuts of H and the 2-cuts of Ĥ. This time, all
nodes in Ĥ are terminals. We can again add zero cost links to replace Ĥ with a cycle, yielding an
instance of SRAP in which R = V (H).

3.4 A structured 2-approximate solution for SRAP

SRAP can be approximated to within a factor of 2 using Jain’s algorithm for Survivable Network
Design [Jai01]. Recall that for a rooted SRAP instance on ring H, the set of cuts to be covered is

C = {C ⊆ V (H) \ r : |δE(C)| = 2, C ∩R ̸= ∅}.

Also recall that a subset of directed links F⃗ is feasible if δ−
F⃗
(C) ≥ 1 for all C ∈ C. In other words,

a directed link covers only those cuts in C that it enters. In this section, we show that we can find

42

a 2-approximate directed-link solution to SRAP which is only incident on terminals, and is highly
structured.

Theorem 3.2.1. There is a polynomial time algorithm for SRAP which yields a directed solution
F⃗ of cost at most 2OPT such that:

1. F⃗ is only incident on the terminals R

2. (R, F⃗) is an r-out arborescence.

3. (R, F⃗) is planar when V (H) is embedded as a circle in the plane.

4. For any v ∈ V , no two directed links in δ+
F⃗
(v) go in the same direction along the ring.

We call a directed solution which satisfies the above conditions an R-special directed solution.

3.4.1 Complete instances

In order to prove Theorem 3.2.1, we need to perform several preprocessing steps on our instance to
ensure that the necessary links are available. This will result in an equivalent “completed” instance
which can be efficiently computed.

To bring our instance into the desired form, we will perform three preprocessing steps: metric
completion, shadow completion, and then a second metric completion on the resulting directed
links.

For the first metric completion, we place a new undirected link between each pair of vertices of the
ring u, v ∈ V (H), with cost equal to the shortest path from u to v which uses only links (if there is
no link-path from u to v the cost is infinity). This does not affect the cost of the optimal solution,
so we may assume without loss of generality that the instance is metric complete. After this step,
there is an undirected link between every pair of vertices in the ring.

For shadow completion, for each link ℓ = (u, v) with u, v ∈ V (H), we will add to the instance a
collection of directed links known as the shadows of ℓ. These will all have the same cost as ℓ. The
shadows of ℓ consist of the two directed links (u, v) and (v, u) as well as all shortenings of these
two directed links. If (u, v) is a directed link, then (s, t) is a shortening of (u, v) if v = t and s is
a vertex on the path from u to v in E \ er.
With this definition, it is not hard to see that a shadow of ℓ covers a subset of the cuts in C that ℓ
covers. Hence, we may perform this step without affecting the cost of the optimal solution.

Finally, we do a second round of metric completion on the newly added directed links, similar to
the first. For every pair of vertices u, v ∈ V (H), if there is a directed path from u to v, we add a
directed link (u, v) with cost equal to the cost of the shortest such path.

After these operations, we are left with an instance of SRAP such that any solution to this instance
can be converted into a solution to the original SRAP instance with the same cost. Hence, we
may assume that these operations have been performed on the given SRAP instance without loss
of generality. See Figure 3.4 for an example of this preprocessing.

Furthermore, we claim that any further iterations of these two preprocessing operations (metric
completion and shadow completion) will not change the instance.

Definition 3.4.1. An instance of SRAP is called a complete instance if for every u, v ∈ V (H),
there is a directed link (u, v) whose cost is equal to the shortest directed path from u to v, and for
every directed link (u, v), the instance contains all shortenings of (u, v) with at most cost c((u, v)).

43

Lemma 3.4.2. Any SRAP instance can be made complete by performing metric completion, then
shadow completion, then a second metric completion.

Proof. Let L denote the set of links in the original instance, and L1, L2, L3 denote the links after
each of the three preprocessing steps, respectively. We want to show that L3 is a complete instance.
Clearly the instance is already metrically complete, since the final preprocessing operation is a
metric completion. So it suffices to show that all shortenings of links in L3 already exist in L3.

Consider any link (u, v) ∈ L3. If (u, v) did not arise from the second metric completion step, then
it is in L2 and all of its shortenings were added in the shadow completion step.

So we focus on the case in which (u, v) arose as a metric completion of some path of links (u =
w0, w1), (w1, w2), . . . , (wk−1, wk = v), where all links on this path are in L2. Without loss of
generality, suppose that u lies to the left of v. Consider an arbitrary shortening of (u, v), which
takes the form (s, v) for some s lying between u and v. There must be some link (wi, wi+1) on the
path such that wi lies to the left of s, and wi+1 to the right of s. Then (s, wi+1) is a shortening of
(wi, wi+1). Moreover, since (wi, wi+1) ∈ L2, then so is (s, wi+1).

In particular, L2 contains the path of links (s, wi+1), . . . , (wk−1, v) whose total cost is at most the
cost of the path from u to v. And hence, L3 contains the shortening (s, v) of (u, v).

er

r

er

r

er

r

Figure 3.4: An example of a SRAP instance undergoing preprocessing steps to obtain a complete instance.
The leftmost SRAP instance has two undirected links ℓ1 (green) and ℓ2 (blue) in L. There are no links added
in L1. The middle picture shows the directed links added in L2, where the green arcs are shadows of ℓ1 and
have cost c(ℓ1), and the blue arcs are shadows of the ℓ2 with cost c(ℓ2). Finally, the third picture shows the
(undominated) directed links added in L3 in yellow. Each of these arcs have cost c(ℓ1) + c(ℓ2). The final
completed SRAP instance contains all of these links.

3.4.2 An R-special 2-approximate solution

We now proceed with the 2-approximate R-special solution for SRAP. First, we make an existential
claim about the existence of a 2-approximate directed solution which only touches terminals, then
we show that we can find one efficiently.

In the proof of Lemma 3.4.3, we will first show that there is a 2-approximate directed solution
which consists of a collection of directed cycles on nodes of the ring. We will then merge these
cycles to obtain a directed solution which is a single directed cycle.

It is helpful to notice that an undirected cycle on nodes A ⊆ V (H) covers the same set of dangerous
ring-cuts that a directed cycle on A covers, which is also the same set of dangerous ring-cuts that

44

the hyper-link A covers. This allows us to use Lemma 3.1.6 to understand when a collection of
directed cycles is feasible.

For a node set A ⊆ V (H), denote by IA ⊆ V (H) the nodes in the minimal interval containing A
which does not contain er.

Lemma 3.4.3. Given an instance of SRAP, suppose the optimal solution has cost OPT. Then
there exists a directed solution of cost at most 2OPT whose links consist of a single directed cycle
including r.

Proof. Let (U∗, F ∗) be a full component of the optimal SRAP solution. Then (U∗, F ∗) is a tree.
Starting from an arbitrary vertex in U∗ ∩ V (H), we take an Euler tour of this tree traversing each
link exactly twice. This induces an ordering of the ring nodes which are visited during the tour
a1, . . . , ak, such that the undirected link set F = {(a1, a2), . . . , (ak−1, ak), (ak, a1)} has cost at most
2c(F ∗) by metric completion.

Now, consider the directed link set F⃗ = {(a1, a2), . . . , (ak−1, ak), (ak, a1)}. The cost of F⃗ is at most
c(F) since it consists of shadows of links in F . Hence c(F⃗) ≤ 2c(F ∗). Furthermore, since F⃗ forms
a directed cycle on the nodes joined by F ∗, any cut covered by F ∗ is also covered by F⃗ .

Repeating this for each full component in the optimal solution yields a directed solution with cost
at most 2OPT. Furthermore, this directed solution consists of a collection of directed cycles on the
nodes of the ring.

We now exploit the following lemma to obtain a directed solution with cost at most 2OPT consisting
of a single directed (not necessarily simple) cycle.

Lemma 3.4.4 (Cycle Merging Lemma). Consider a SRAP instance on the ring H = (V (H), E).
Let F⃗S and F⃗A be two directed cycles of links on nodes S,A ⊆ V (H), respectively, where r ∈ S. If
S and A are intersecting as hyper-links, then there exists a directed link set F⃗S∪A which forms a
directed cycle on S ∪A of cost at most c(F⃗S) + c(F⃗A).

Proof. First observe that if A ∩ S ̸= ∅, we simply define F⃗S∪A = F⃗S ∪ F⃗A, and the statement of
the lemma is satisfied.

So, suppose that A∩ S = ∅. Denote the cycle links as F⃗S = {(s1, s2), . . . , (sk−1, sk), (sk, s1)}, with
s1 = r, and F⃗A = {(a1, a2), . . . , (aℓ−1, aℓ), (aℓ, a1)}. Consider the interval IA of A. Since S and A
are intersecting (as hyper-links), and S contains the root r while r ̸∈ IA, it must be the case that
the cycle formed by F⃗S leaves IA at least once. Let (si, si+1) ∈ F⃗S be a directed link leaving IA.

Now consider the interval I∗ = I{si,si+1}. We claim that F⃗A leaves I∗ at least once. Indeed, since
(si, si+1) leaves IA, some a ∈ A is in I∗. But all of A cannot be contained in I∗, since then
(si, si+1) leaving IA would imply that si ∈ A, contradicting our assumption that A ∩ S = ∅. Let
(aj , aj+1) ∈ F⃗A be a directed link leaving I∗.

We now define F⃗S∪A to be the directed links along the cycle

s1, . . . , si, aj+1, aj+2, . . . , aj , si+1, . . . , s1.

See Figure 3.5 for an example. Observe that (si, aj+1) is a shortening of (aj , aj+1) and (aj , si+1) is

a shortening of (si, si+1). Therefore c(F⃗S∪A) ≤ c(F⃗S) + c(F⃗A) as desired. Moreover, F⃗S∪A forms a
cycle on S ∪A.

45

er

r

sisi+1

aj

aj+1

Figure 3.5: An example of cycle merging, with F⃗S in purple and F⃗A in green. Note that (si, si+1) leaves the
interval IA, and (aj , aj+1) leaves the interval I{si,si+1}. Dropping these two links, and adding the shortenings

drawn as dotted arcs creates the single cycle F⃗S∪A.

We can now use Lemma 3.4.4 to transform a directed solution that is a collection of directed cycles
on ring nodes A1, . . . , Ap into a single directed cycle on A :=

⋃p
i=1Ai. Let J⃗ denote the directed

solution consisting of a collection of directed cycles on the nodes in the ring. Since r is a terminal,
it must be contained in some cycle F⃗S0 on S0 ⊆ V (H). We build a new directed solution starting
with F⃗S0 by repeatedly apply Lemma 3.4.4, cycle merging. In each step, choose a new cycle F⃗A

from J⃗ that has not yet been merged and such that A is intersecting with Si, and update F⃗Si by
merging: F⃗Si+1 ← F⃗Si∪A. If all cycles from J⃗ can be merged in this way, this yields a single directed

cycle. It is feasible, since it is incident to all terminals, and its cost is at most that of J⃗ , which is
at most 2OPT.

It remains only to show that at every step, if there are un-merged cycles from J⃗ , then one of them
is on a set of nodes which is intersecting with Si. First, observe that F⃗Si is a cycle on all of the
nodes belonging to the cycles merged so-far, so it suffices to find some un-merged F⃗A in J⃗ such
that A is intersecting with the nodes in one of the cycles merged so-far.

Since J⃗ is feasible, the corresponding collection of undirected cycles is also feasible. Hence, by
Lemma 3.1.6, the hyper-links on the vertices of the cycles in J⃗ are connected in the hyper-link
intersection graph. Now for any un-merged cycle F⃗A′ , look at the path in the hyper-link intersection
graph from the hyper-link on S0 to the hyper-link on A′. The first hyper-link along this path
corresponding to an un-merged cycle F⃗A must be intersecting with a merged cycle, so is intersecting
with Si.

With the above lemma in hand, and due to our second metric completion step, we can now shortcut
over the non-terminals in the cycle to obtain a 2-approximate directed solution which only touches
terminals.

Lemma 3.4.5. Given an instance of SRAP, if the optimal solution has cost OPT, then there is a
directed solution of cost at most 2OPT whose links consist of a single directed cycle with node set
R.

Proof. This follows by taking the directed cycle solution F⃗ from Lemma 3.4.3 and short-cutting
through all non-terminal nodes. Since the third preprocessing step ensures that the directed links

46

are metrically complete, replacing a path of directed links with a single link cannot increase the
cost. Hence, the resulting solution has cost at most c(F⃗) ≤ 2OPT.

Having shown that there exists a directed 2-approximate solution to any SRAP instance which is
incident only on the terminals R, we now proceed to show how to compute one in polynomial time.
In particular, we will prove that the optimal such solution can be found efficiently. And moreover,
the solution can be assumed to have additional structure.

Recall that the Weighted Ring Augmentation Problem (WRAP) is a special case of SRAP in which
all nodes are terminals, and there are no nodes outside of the ring H. A directed solution F⃗ to
WRAP is non-shortenable if it is feasible but deleting or strictly shortening any link f ∈ F⃗ results
in an infeasible solution. Traub and Zenklusen proved that a non-shortenable directed solution to
WRAP has a planar arborescence structure, and can be computed in polynomial time.

Lemma 3.4.6 (Lemma 2.5 in [TZ22a]). A non-shortenable optimal directed solution to the WRAP
problem can be found in polynomial time.

Reducing our problem to a WRAP instance and applying the above lemma yields the main theorem
of this section:

Theorem 3.2.1. There is a polynomial time algorithm for SRAP which yields a directed solution
F⃗ of cost at most 2OPT such that:

1. F⃗ is only incident on the terminals R

2. (R, F⃗) is an r-out arborescence.

3. (R, F⃗) is planar when V (H) is embedded as a circle in the plane.

4. For any v ∈ V , no two directed links in δ+
F⃗
(v) go in the same direction along the ring.

Proof. Consider a SRAP instance on the ring H = (V (H), E) with terminals R ⊆ V (H), root
r ∈ R, and links L. We construct a new ring H ′ = (R,E′) on the terminals by iteratively replacing
each non-terminal node in V (H) with an edge between its two neighbors in H. We now create a
WRAP instance on H ′ by taking the subset L′ of links which are directed links incident only to R.

We apply Lemma 3.4.6 (Lemma 2.5 from [TZ22a]) to get a non-shortenable optimal directed so-
lution F⃗ to this WRAP instance. Since Lemma 3.4.5 guarantees the existence of a directed 2-
approximation which only touches terminals, this implies that c(F⃗) ≤ 2OPT.

Now consider F⃗ as a solution to the SRAP instance on H. Since F⃗ is non-shortenable when viewed
as a solution to the WRAP instance on H ′, Theorem 2.6 from [TZ22a] shows that it satisfies the
three conditions when viewed as a solution to H. It remains only to argue that F⃗ is actually
feasible. This is immediate from the arborescence structure of F⃗ : there is a path from r to every
terminal.

3.5 A (1 + ln 2 + ε)-approximation for SRAP

In this section, we describe a polynomial time algorithm for SRAP which achieves an approximation
ratio of (1 + ln 2 + ε). Before writing the algorithm, we comment on a slight departure of our
algorithm from the relative greedy algorithm for standard WRAP.

47

Algorithm 3: Relative greedy algorithm for SRAP

3.1 Input: A complete instance of SRAP with graph G = (V,E∪̇L), ring H = (V (H), E),
terminals R ⊆ V (H) and c : L→ R. Also an ε > 0.

3.2 Output: A solution S ⊆ L with c(S) ≤ (1 + ln(2) + ε) · c(OPT).
3.3

1. Compute a 2-approximate R-special directed solution F⃗0 (Theorem 3.2.1).

2. Let ε′ := ε/2
1+ln 2+ε/2 and γ := 2⌈1/ε

′⌉.

3. For each A ⊆ V (H) where |A| ≤ γ, compute the cheapest full component joining A and
denote the cost by cA.

4. Create an instance of γ-restricted Hyper-SRAP on the ring H = (V (H), E) with hyper-links
L = {ℓA : A ⊆ V (H), |A| ≤ γ}. Set the cost of hyper-link ℓA to be cA.

5. Initialize S0 := ∅

6. Let α := 4⌈4/ε⌉

7. While F⃗i ̸= ∅:

• Increment i by 1.

• Compute the α-thin subset of hyper-links Zi ⊆ L minimizing c(Zi)

c(drop
F⃗0

(Zi)∩F⃗i−1)
.

• If c(Zi)

c(drop
F⃗0

(Zi)∩F⃗i−1)
> 1, then update Zi = κf for some f ∈ F⃗i−1.

• Let Si := Si−1 ∪ Zi and let F⃗i := F⃗i−1 \ dropF⃗0
(Zi).

8. Return A SRAP solution with full components corresponding to the hyper-links in S := Si.

Given any SRAP instance, we may convert it into an equivalent complete instance (see § 3.4.1).
We observe that for any directed link f = (u, v) on the ring, there is a collection of undirected links
whose coverage is at least that of f , and whose total cost is at most c(f). We call this set κf . Indeed,
if f is a shadow of an undirected link ℓ, then we may take κf = {ℓ}. Otherwise, f arises from
the metric completion of some directed path of links (u = s0, s1), (s1, s2), . . . , (sk−1, sk = v). Each
of these links in the directed path may themselves be shortenings of undirected links {ℓ1, . . . , ℓk}.
In this case, κf = {ℓ1, . . . , ℓk}. Note in particular that κf covers all of the dangerous ring-cuts

that f covers, so if f is in some R-special solution F⃗0, then f ∈ dropF⃗0
(κf) (see § 3.6 for a formal

definition of drop).

In order to show that our algorithm makes sufficient progress at each step, we must have that the
cost of our mixed solution does not ever increase over the course of the algorithm. In the case of
WRAP, this is immediate, since any directed link is a shadow of some single undirected link of the
same cost, an α-thin set. However, in our case, κf may not be α-thin, so we explicitly consider this
as a separate case in each step of our algorithm. See Algorithm 3.

The proof of the following theorem follows from a standard analysis of the relative greedy algorithm
as in [CN13b], [TZ22b], and [TZ22a]. We include it here for completeness.

48

Theorem 3.5.1. Algorithm 3 is a (1 + ln 2 + ε)-approximation algorithm for SRAP.

Proof. First, we note that in each iteration of the algorithm, |F⃗ | will be reduced by at least 1. The
initial value of |F⃗ | is at most |R|−1, so there are polynomially many iterations. By Theorem 3.8.1,
each iteration can be executed in polynomial time. Hence Algorithm 3 runs in polynomial time.

The returned solution S is feasible since the invariant that Si ∪ F⃗i is a feasible mixed solution is
maintained throughout the algorithm.

To complete the proof, we show that S has cost at most (1 + ln 2 + ε) · c(OPT). Denote by OPTγ

the optimal γ-restricted solution. Apply the decomposition theorem, Theorem 3.2.3, to OPTγ and

the R-special solution F⃗0. It gives a partition Z of OPTγ into α-thin parts, and some Q ⊆ F⃗0 with

c(Q) ≤ ε/4 · c(F⃗0) ≤ ε/2 · c(OPT). Then observe that

c(Zi)

c(dropF⃗0
(Zi) ∩ F⃗i−1)

≤ min
Z∈Z

c(Z)

c(dropF⃗0
(Z) ∩ F⃗i−1)

≤
∑

Z∈Z c(Z)∑
Z∈Z c(dropF⃗0

(Z) ∩ F⃗i−1)
≤ c(OPTγ)

c(F⃗i−1)− c(Q)
,

where the first inequality is by the choice of Zi in the algorithm, and the second and third fol-
low from the statement of Theorem 3.2.3. Since f ∈ dropF⃗0

(κf), our choice of Zi implies that,

c(Zi)/c(dropF⃗0
(Zi) ∩ F⃗i−1) ≤ 1. Therefore, since dropF⃗0

(Zi) ∩ F⃗i−1 = F⃗i−1 \ F⃗i, we have

c(Zi) ≤ min

{
1,

c(OPTγ)

c(F⃗i−1)− c(Q)

}
· c(F⃗i−1 \ F⃗i) ≤

∫ c(F⃗i−1)

c(F⃗i)
min

{
1,
c(OPTγ)

x− c(Q)

}
dx.

Finally, sum over all iterations of the algorithm to get the cost of the output S:

c(S) =
∑
i

c(Zi)

≤
∫ c(F⃗0)

0
min

{
1,
c(OPTγ)

x− c(Q)

}
dx

=

∫ c(OPTγ)+c(Q)

0
1 dx+

∫ c(F⃗0)

c(OPTγ)+c(Q)

c(OPTγ)

x− c(Q)
dx

≤
(
1 +

ε

2

)
· c(OPTγ) + ln

(
c(F⃗0)− c(Q)

c(OPTγ)

)
· c(OPTγ)

≤
(
1 + ln(2) +

ε

2

)
· c(OPTγ)

And applying Lemma 3.1.8 for our choice of ε′ and γ from the algorithm, we have c(OPTγ) ≤
(1 + ε′) · c(OPT). Hence, we get the desired bound

c(S) ≤
(
1 + ln(2) +

ε

2

)
· (1 + ε′) · c(OPT) = (1 + ln(2) + ε) · c(OPT).

3.6 Dropping Directed Links

The main reason that we work with structured R-special directed solutions to SRAP is that it
allows us to cleanly characterize when a directed link can be dropped after a collection of hyper-
links are added to the solution. In this section, we recall the properties of an R-special directed
solution and use them give such a characterization.

49

Given an instance of Hyper-SRAP we can use the root r and root-edge er to define a notion of
right and left along the ring. In particular, we imagine deleting the edge er from the ring and
consider the root to be the left-most node on the remaining path. The other node incident to er is
the right-most node in the ring.

Consider a R-special directed solution F⃗ for the SRAP problem. Recall that F⃗ has the following
properties:

1. F⃗ is only incident on terminals R.

2. (R, F⃗) is an r-out arborescence.

3. (R, F⃗) is planar when V (H) is embedded as a circle in the plane.

4. For any v ∈ R, no two directed links in δ+
F⃗
(v) go in the same direction along the ring.

Given an R-special directed SRAP solution F⃗ , we associate to each cut C ∈ C a single link which
is responsible for covering it, as in [TZ22a]. In particular, an arc ℓ = (u, v) ∈ F⃗ is responsible
for covering a cut C ∈ C if ℓ enters C and there is no other arc on the unique r–u path in (R, F⃗)
which enters C. We denote the set of cuts for which a link ℓ ∈ F⃗ is responsible by RF⃗ (ℓ). Notice

that RF⃗ (ℓ) ̸= ∅ for all ℓ ∈ F⃗ , since if some directed link were not responsible for any cuts, then it

could be deleted without affecting the feasibility of F⃗ , but this is not true of any arc in an R-special
directed solution.

We will show that every ring-dangerous cut C ∈ C has exactly one directed link responsible for it in
an R-special solution F⃗ . First we will need the following lemma which follows from the properties
of F⃗ .

Lemma 3.6.1. Let F⃗ be an R-special directed solution for SRAP.

(i) For any v ∈ R, the set of descendants of v in (R, F⃗) is of the form R ∩ I for some ring
interval I ⊆ V (H).

(ii) For v1, v2 ∈ R, the least common ancestor of v1 and v2 in (R, F⃗) lies between v1 and v2.

This is an analogue to Lemma 4.8 from [TZ22a]. In fact, this lemma follows immediately from
Lemma 4.8 from [TZ22a] by simply removing the Steiner nodes in the ring and viewing F⃗ as an
R-special solution on a ring with only the terminals R (c.f. the proof of Theorem 3.2.1).

Lemma 3.6.2. For each cut C ∈ C, there is exactly one directed link ℓ ∈ F⃗ responsible for it.

Proof. A cut C ∈ C clearly has at least one link responsible for it, since F⃗ enters all such cuts. On
the other hand, no two links can both be responsible for C. This is because C is an interval, so if
(u1, v1) ̸= (u2, v2) are both responsible for C, then the least common ancestor v of v1 and v2 is in
C, by Lemma 3.6.1(ii). Since r ̸∈ C, there must be some link in the r–v path in (R, F⃗) (and hence
also on the r–v1 path) entering C, contradicting that (u1, v1) is responsible for C.

We can now define when a directed link will be dropped from an R-special directed solution F⃗ . In
particular, if a collection of hyper-links K is added to the solution, then we will drop a directed
link if and only if all cuts it is responsible for are covered by the hyper-links in K. Let δK(C) be
the set of hyper-links in K which cover C ∈ C.

50

Formally, denote
dropF⃗ (K) = {f ∈ F⃗ : |δK(C)| ≥ 1 for all C ∈ RF⃗ (f)}.

With this definition, if a collection of hyper-links K is added to an R-special directed solution F⃗
to SRAP, and dropF⃗ (K) is removed, then the solution remains feasible as a mixed SRAP solution.

Our ultimate goal of this section is an alternate characterization of the set dropF⃗ (K). For this, we
will use the notion of the hyper-link intersection graph. Recall that a pair of hyper-links ℓ1 and ℓ2
are intersecting if they share a vertex or there is a vertex in ℓ between two vertices in ℓ′ and a
vertex of ℓ′ lies between two vertices of ℓ.

Given an instance of Hyper-SRAP with ring H = (V (H), E) and hyper-links L, we define the
hyper-link intersection graph Γ as follows. For each hyper-link ℓ ∈ L there is a node vℓ. Two nodes
vℓ1 and vℓ2 are adjacent in the hyper-link intersection graph if and only if ℓ1 and ℓ2 are intersecting
hyper-links. For K ⊆ L, Γ(K) is the hyper-link intersection graph restricted to the hyper-links in
K.

The following lemma and its proof are similar to the analogous statements for standard links
(Lemma 5.4 in [TZ22a]).

Lemma 3.6.3. Let K ⊆ L be a collection of hyper-links, and C ∈ C a dangerous ring-cut. Then
δK(C) ̸= ∅ if and only if there is a path in Γ(K) from a hyper-link containing some v ∈ C to a
hyper-link containing some w ̸∈ C.

Proof. If δK(C) ̸= ∅, then clearly such a path in Γ(K) exists. In particular, any single hyper-link
in δK(C) forms a path. Conversely, suppose such a path exists in Γ(K), but that δK(C) = ∅
for contradiction. That is, any hyper-link in K is either fully contained C or fully contained in
V (H) \C. Since the path starts with a hyper-link containing v ∈ C, and ends with one containing
w ̸∈ C, the path must contain some pair of intersecting hyper-links ℓ1 and ℓ2 with ℓ1 contained in
C, while ℓ2 is contained in V (H) \C. Hence, clearly ℓ1 and ℓ2 do not share a vertex. Furthermore,
since C is an interval, any vertex lying between two vertices in ℓ1 must also lie in C, and hence not
in ℓ2. This contradicts that ℓ1 and ℓ2 are intersecting.

Lemma 3.6.3 yields Lemma 3.1.6 as an immediate corollary, but we will not need Lemma 3.1.6 in
this section.

The notions of v-bad and v-good were used in [TZ22a], but the definitions need to be modified for
our setting.

Definition 3.6.4. Let v ∈ R and consider the maximal interval Iv ⊆ V (H) containing v such that
Iv does not contain a terminal which is a non-descendant of v in (R, F⃗). We say that the nodes in
Iv are v-bad, and all nodes in V (H) \ Iv are v-good.

Observe that by Lemma 3.6.1(i), the interval of v-bad nodes actually contains all descendants of v
(but may also contain some Steiner nodes in the ring).

The following lemmas are analogous to Lemmas 5.6 and 2.10, respectively, in [TZ22a]. The proofs
are similar, but we include them here as our definitions of v-good and v-bad have changed.

Lemma 3.6.5. A directed link (u, v) ∈ F⃗ is responsible for a cut C ∈ C if and only if v ∈ C and
all of the nodes in C are v-bad.

51

Proof. If v ∈ C and all nodes of C are v-bad, then C ∩ R contains only descendants of v. In
particular, u ̸∈ C, so (u, v) enters C, and no other link on the r–v path in F⃗ can enter C.

Conversely, if (u, v) is responsible for cut C, then it enters C, so v ∈ C. Moreover, for every
t ∈ C ∩ R, the r–t path in F⃗ must have a link entering C. By Lemma 3.6.2 we know that (u, v)
is the only link responsible for C, so every such t must be a descendant of v. That is, C ∩ R
are all descendants of v, and in particular, C contains no terminals which are non-descendants of
v. Hence, since C is an interval, it is contained in the maximal interval containing no terminal
non-descendants of v, which is precisely the set of v-bad nodes.

This yields the main result of this section, which provides a characterization of when a directed
link (u, v) can be dropped, namely when v is connected to a v-good vertex through the hyper-link
intersection graph. This is the criterion we will work with in § 3.7.

Lemma 3.6.6. For a collection of hyper-links K, a directed link (u, v) is in dropF⃗ (K) if and only
if Γ(K) contains a path from a hyper-link containing v to a hyper-link containing a v-good vertex
w.

Proof. First suppose that there is such a path in Γ(K). Then any cut C ∈ RF⃗ ((u, v)) for which
(u, v) is responsible cannot contain w, since by Lemma 3.6.5 it only contains v-bad nodes. Hence,
by Lemma 3.6.3, we have that δK(C) ̸= ∅.

Conversely, if v is not connected to a v-good vertex by K in the hyper-link intersection graph, then
consider the set Kv ⊆ V (H) of nodes reachable from v via the hyper-link intersection graph of K.
Let IKv be the interval of these nodes. Then IKv ∈ C, since v ∈ IKv , r ̸∈ IKv (since r is v-good)
and it is a 2-cut. Moreover, since Kv are all v-bad, then IKv are as well. By Lemma 3.6.5, this
implies that (u, v) is responsible for the cut IKv . We finish the proof by arguing that K does not
cover IKv , implying that (u, v) ̸∈ dropF⃗ (K). This is clear from the definition of the hyper-link
intersection graph: if some hyperlink in K covers IKv , then it must be intersecting with a hyperlink
reachable from v in the hyper-link intersection graph, thus contradicting that Kv are all of the
nodes reachable from v in the hyper-link intersection graph of K.

3.7 The Decomposition Theorem for Hyper-SRAP

In this section, we prove the following theorem.

Theorem 3.2.3 (Decomposition Theorem). Given an instance of Hyper-SRAP (H = (V (H), E), R,L),
suppose F⃗0 is an R-special directed solution and S ⊆ L is any solution. Then for any ε > 0, there
exists a partition Z of S into parts so that:

• For each Z ∈ Z, Z is α-thin for α = 4⌈1/ε⌉.

• There exists Q ⊆ F⃗0 with c(Q) ≤ ε · c(F⃗0), such that for all f ∈ F⃗0 \Q, there is some Z ∈ Z
with f ∈ dropF⃗0

(Z). That is, F⃗0 \Q ⊆
⋃

Z∈Z dropF⃗0
(Z).

We follow the approach in [TZ22a] which proves the result when all hyper-links have size 2 and
R = V (H). We will first partition the hyper-links in S into a collections of festoons whose spans
form a laminar family. We will then construct a dependency graph whose nodes correspond to
festoons, which will allow us to partition the links of S into the desired α-thin pieces. In the
general hyper-link setting, the festoons are composed of hyper-links rather than links of size 2.

52

We begin by defining festoons in the context of hyper-links. The interval of a hyper-link ℓ is denoted
Iℓ and is the set of vertices in the interval between the leftmost vertex and the rightmost vertex of
ℓ. We say that hyper-links ℓ and ℓ′ are crossing if their intervals intersect and neither is a subset of
the other. Recall that two hyper-links are intersecting if they share a vertex, or there is a vertex
in ℓ between two vertices in ℓ′ and a vertex of ℓ′ lies between two vertices of ℓ (when the vertices
are viewed in the left to right order along the ring). Notice that if two hyper-links are crossing,
then they also are intersecting.

Definition 3.7.1. A festoon is a set of hyper-links X ⊆ L which can be ordered ℓ1, . . . , ℓp such
that ℓi and ℓi+1 are crossing for i ∈ {1, . . . , p− 1} and Iℓi and Iℓj are disjoint unless |i− j| = 1.

Notice that whether a set of hyper-links is a festoon only depends on their hyper-link intervals.
Let C′ = {C ⊆ V (H) : |δE(C)| = 2, r ̸∈ C} be the family of minimum cuts of the ring H. One of
the key properties of festoons is that no minimum cut is covered by more than 4 hyper-links in a
festoon.

Lemma 3.7.2. Let X be a festoon and C ∈ C′. Then |{ℓ ∈ X : ℓ covers C}| ≤ 4.

Proof. Suppose X = ℓ1, . . . , ℓp is a festoon of hyper-links and C ∈ C′. Then C is an interval between
vertices say u and v in V (H), where u is the left endpoint of C and v is the right endpoint.

We will show that there are at most two hyper-links in δX(C) which contain vertices to the left of
u. A symmetric argument shows that there can be at most two hyper-links in δX(C) containing a
vertex to the right of v. Together, these imply that there are at most 4 hyper-links in δX(C).

Suppose there are 3 hyper-links covering C which contain vertices to to the left of u. Since they
cover C, each of these hyper-links must also contain some vertex in C. Thus, their hyper-link
intervals all contain the vertex u. But this is impossible, as the definition of festoons requires that
Iℓi and Iℓj are disjoint unless |i− j| = 1.

Definition 3.7.3 (α-thin set of hyper-links). A set of hyper-links K is α-thin if there exists a
maximal laminar subfamily D of C′ such that for every cut C ∈ D, we have |{ℓ ∈ K : ℓ covers C}| ≤
α.

Given a festoon X, let IX denote the festoon interval which is the interval from the left-most
vertex in the festoon to the right-most. We can partition S into a collection of festoons X , so that
the festoon intervals form a laminar family. To do this, we iteratively construct the partition by
choosing a festoon with the largest interval in each iteration and adding it to the partition. We
now prove that if the set S is partitioned in this way, it yields a partition X such that the set of
festoon intervals form a laminar family.

Lemma 3.7.4. The festoon intervals {IX : X ∈ X} form a laminar family.

Proof. Suppose that X,Y ∈ X are such that IX and IY cross. We also assume without loss of
generality that X was added the festoon family before Y was.

Let ℓ1, . . . , ℓp be the hyper-links in the festoon X, numbered according to the festoon order. We
will assume X is to the left of Y . Since they cross, there is some hyper-link in Y whose left endpoint
is in IX . But then this hyper-link would have been included in X to form a longer interval.

Given the laminar structure of the festoon intervals, we can define a partial order on the festoons
in X . In particular, we will say that X ≺ Y if IX ⊆ IY .

53

Definition 3.7.5. We say that two festoons X and Y are tangled if some hyper-link in X is
intersecting with some hyper-link of Y .

Suppose that X1, . . . , Xp is a sequence of festoons such that X1 contains a vertex v ∈ R \ r, Xi and
Xj are tangled iff |i− j| = 1, and Xp contains a v-good vertex, but no festoons Xi for i < p contain
a v-good vertex. Then by Lemma 3.6.6, {X1, . . . , Xp} is a minimal collection of festoons such that

the directed link (u, v) ∈ F⃗ can be dropped. We will choose for each v ∈ R, a minimal collection
of festoons Xv = {X1, . . . , Xp} as above so that |IXp | is minimized. This will allow us to construct
the dependency graph with the desired properties.

We now turn to defining the dependency graph (X , A). It will have a vertex for each festoon in X ,
and its arcs are obtained by inserting for each directed link (u, v) ∈ F⃗ a directed path corresponding
to a minimal set of festoons as above. Formally, for each v ∈ R \ r, there will be a directed path
Pv consisting of the festoons in Xv where (Xi, Xi−1) ∈ A for i ∈ {2, . . . p}.
It will be helpful to consider a subgraph of the dependency graph which is constructed only from
paths Pv where v ∈ U for some set of terminals U ⊆ R \ r. This is called the U-dependency
graph.

We will use that the dependency graph is a branching, which follows from the minimality in its
construction and the partial order defined on festoons. Clearly, this implies that the U -dependency
graph is also a branching for any U ⊆ R \ r.

Lemma 3.7.6. The dependency graph (X , A) is a branching. That is, the in-degree of every node
X ∈ X is at most 1 and it contains no cycles.

Proof. Since (X,Y) ∈ A implies Y ≺ X, it is clear that (X , A) contains no directed cycles. We
now show that each festoon X has in-degree at most 1. Suppose for the sake of contradiction that
(Y,X) ∈ A and (Z,X) ∈ A where Y ̸= Z. Since the arcs in A arise from a collection of directed
paths, it must be the case that (Y,X) ∈ Pv and (Z,X) ∈ Pw for distinct vertices v, w ∈ R \ r.
We will use the following key property, used in [TZ22a], which continues to hold in our setting: for
any pair of terminals v, w ∈ R \ r, either w is v-good or v is w-good. Hence, we assume without
loss of generality that w is v-good.

Since (Z,X) ∈ Pw, we have that w is contained in the festoon interval IX of X. Since the v-good
vertices form an interval, X must contain a hyper-link which contains a v-good vertex. But by
Lemma 3.6.6, this means that Y is not necessary for a directed link entering v to be dropped,
contradicting (Y,X) ∈ Pv.

We can bound the thinness of the components of the dependency graph with the following lemmas,
which are direct extensions of analogous lemmas in [TZ22a]. Let α be some positive integer, and
U ⊆ R \ r.

Lemma 3.7.7. If X ′ is a connected component of the U -dependency graph and the set

{Z ∈ X ′ : X ⪯ Z, X and Z are tangled}

has cardinality at most α for every festoon X ∈ X ′, then X ′ is 4(α+ 1)-thin.

Proof. The proof is the same as the proof of Lemma 7.16 in [TZ22a]. Note that Lemma 7.8
in [TZ22a] holds for festoons of hyper-links as well as standard festoons.

54

Lemma 3.7.8. Suppose X and Y are festoons in the same connected component of the U -dependency
graph. If X and Y are tangled, then they have an ancestor-descendant relationship in the U -
dependency graph.

Proof. Again, the proof is a direct extension of Lemma 7.17 in [TZ22a].

Lemma 3.7.9. Let (X ′, A′) be a connected component of the U -dependency graph. If

|{u ∈ V : P ∩ Pu ̸= ∅}| ≤ α

for every directed path P ⊆ A′ then the collection of links which are contained in festoons of X ′ is
4(α+ 1)-thin.

Proof. First, notice that for every X ∈ X , there are at most α festoons in X ′ which are at least X
in the partial ordering. This is because X can be tangled with at most one festoon from each Pu,
which follows from minimality as well as Lemma 3.7.8. Hence, by Lemma 3.7.7, X ′ is 4(α+1)-thin
as desired.

Having shown that the dependency graph is a branching, the property given in Lemma 3.7.9 is
enough to replicate the same argument which was introduced by Traub and Zenklusen in [TZ22b]
for the Weighted Tree Augmentation Problem to prove the decomposition theorem. We break the
dependency graph up into pieces, such that each corresponds to a collection of hyper-links which
is α-thin, while only destroying a small fraction of the sets Pu. We reproduce the proof below.

Theorem 3.2.3 (Decomposition Theorem). Given an instance of Hyper-SRAP (H = (V (H), E), R,L),
suppose F⃗0 is an R-special directed solution and S ⊆ L is any solution. Then for any ε > 0, there
exists a partition Z of S into parts so that:

• For each Z ∈ Z, Z is α-thin for α = 4⌈1/ε⌉.

• There exists Q ⊆ F⃗0 with c(Q) ≤ ε · c(F⃗0), such that for all f ∈ F⃗0 \Q, there is some Z ∈ Z
with f ∈ dropF⃗0

(Z). That is, F⃗0 \Q ⊆
⋃

Z∈Z dropF⃗0
(Z).

Proof. Let q := ⌈1ε⌉. We will construct an arc labeling for each connected component (X ′, A′) of
the (R \ r)-dependency graph (X , A), which is a branching by Lemma 3.7.6. The arcs in the same
set Pu will receive the same label.

We define the labeling inductively as follows. For each directed path Pu which begins at the root
of the arborescence (X ′, A′), we set the labels of the arcs in this path to be 0. For a directed path
Pu which begins at a node X which is not the root, we set the label of the arcs in Pu to be j + 1,
where j is the label of the unique arc entering X. We perform the labeling in this fashion for each
connected component of the dependency graph to obtain a labeling of all arcs in A

Now, let Qi ⊆ F⃗ be the set of directed links (u, v) such that Pv received label i, where i ∈
{0, . . . , q − 1}. This is a partition of F⃗ into q parts. Hence, the average cost of the sets Qi is
c(F⃗)/q, implying that the cheapest set among Q0, . . . , Qq−1 has cost at most c(F⃗)/q. Let this

cheapest part be denoted by Q ⊆ F⃗ .
We define U ⊆ R to be those terminals which are not entered by a directed link in Q, and consider
the U -dependency graph. The U -dependency graph is obtained by deleting from (X , A) all arcs
with label i for some i ∈ {0, . . . , q − 1}. Hence, each of its connected components satisfies the
hypothesis of Lemma 3.7.9 where α = q− 1, implying that the set of hyper-links in the festoons of

55

each component is 4q-thin. This yields our partition of the hyper-links of S into parts where each
part is 4⌈1ε⌉-thin.

Finally, for each directed link (u, v) ∈ F⃗ \Q there is some connected component of the U -dependency
graph which contains all the arcs in Pv. Hence, (u, v) is droppable by adding all the hyper-links in
the festoons of this component. Since, c(Q) ≤ ε · c(F⃗), we have the desired property.

3.8 Dynamic Programming to find the best α-thin component

In this section, we prove that, given an R-special directed solution F⃗0, and a subset F⃗ ⊆ F⃗0, the
α-thin collection of γ-restricted hyper-links K which minimizes the ratio

c(K)

c(dropF⃗0
(K) ∩ F⃗)

can be found in polynomial time.

As is now standard following the results of [TZ22b][TZ22a][RZZ23], we will focus on maximizing
slackρ(K) defined as

slackρ(K) := ρ · c(dropF⃗0
(K) ∩ F⃗)− c(K).

Notice that deciding whether the ratio c(K)

c(drop
F⃗0

(K)∩F⃗)
is smaller than a fixed ρ∗ is equivalent to

deciding whether slackρ∗(K) is greater than 0. Thus, if we can efficiently find a maximizer of the
slack function for any given ρ, then we can use binary search to obtain our desired result.

It will be convenient for the results in § 3.9 to prove a more general result allowing different cost
functions on the two terms of the slack function.

Theorem 3.8.1. Given an instance of SRAP, let F⃗0 be an R-special directed solution. Let c̃ : F⃗0 →
R≥0 be a cost function on F⃗0. Then a maximizer of c̃(dropF⃗0

(K))− c(K) over all α-thin subsets of
γ-restricted hyper-links can be computed in polynomial time.

Given Theorem 3.8.1, we can maximize slackρ by setting c̃(ℓ) = ρ · c(ℓ) for ℓ ∈ F⃗ ∩ F⃗0 and 0
otherwise. We will prove the above theorem by dynamic programming.

Traub and Zenklusen prove this optimization theorem for the WRAP problem in [TZ22a]. The
proof in our setting is an extension of their methods. The key differences in our context are twofold.
First, we are working with an R-special directed solution F⃗0 which is incident only on the terminals
R, whereas in WRAP, the arborescence contains all the nodes of the ring. Secondly, we must extend
their techniques to hyper-links, rather than standard undirected links containing pairs of vertices
of the ring.

To handle this, we will add artificial links to the R-special solution F⃗0 to obtain a V (H)-special
solution F⃗ ′, which allows us to extend the least common ancestor function to all subsets of ring
nodes. This allows us to leverage Lemma 3.8.4, which is the analogue of Lemma 2.11 in [TZ22a], and
is crucial in computing new table entries from already computed ones. Finally, we exploit the fact
that we are only working with hyper-links of size at most γ, implying that there are polynomially
many hyper-links available.

To state Lemma 3.8.4, we will need to extend the notion of the least common ancestor to a set of
ring nodes, some of which may not be involved in the arborescence F⃗0. We first prove some useful

56

properties of v-bad intervals. Recall that for a terminal v ∈ R, its v-bad interval is the maximal
interval containing v which does not include a terminal non-descendant of v in F⃗0. We show that
this collection of intervals is a laminar family.

Lemma 3.8.2. Suppose F⃗0 is an R-special solution, and let Iv ⊆ V (H) denote the v-bad interval.
Then the family of all v-bad intervals F = {Iv : v ∈ R} is laminar.

Proof. Consider two terminals u and v with u-bad interval Iu and v-bad interval Iv. By Lemma 3.6.1(ii),
the least common ancestor (in F⃗0) w of u and v, lies between them. If w is not u or v, then it is a
non-descendant of both of them, so neither Iu nor Iv can contain w. Since u ∈ Iu and v ∈ Iv, these
intervals do not intersect.

Otherwise, w is equal to either u or v; suppose w = u without loss of generality. But then all
non-descendants of u are non-descendants of v, so Iv ⊆ Iu. Thus, the family is laminar.

We now describe how we add artificial directed links to the R-special solution F⃗0 to obtain a V (H)-
special solution F⃗ ′. We will then use F⃗ ′ to define a notion of least common ancestor in F⃗0 that is
defined for any subset of ring nodes.

For each terminal v ∈ R, define the set of nodes Sv ⊆ V (H) to consist of all nodes u such
that Iv is the minimal interval of F which contains u. Notice that Sv is an interval containing
exactly one terminal, namely v, and potentially Steiner nodes to the left and right of v. Suppose
Sv = SL

v ∪ SR
v ∪ {v} where SL

v and SR
v are the (possibly empty) sets of Steiner nodes in Sv to the

right and left of v respectively. Suppose SL
v = {sL0 , . . . , sLk } ordered right to left along the ring, and

SR
v = {sR0 , . . . , sRm} ordered left to right along the ring. We now add the set of artificial directed

links {(v, sL0), (sL0 , sL1), . . . , (sLk−1, s
L
k)} ∪ {(v, sR0), (sR0 , sR1), . . . , (sRm−1, s

R
m)}. See Figure 3.6.

er

r

a

c

d

b

e

f

Figure 3.6: An example of an R-special solution with R = {r, a, b, c, d} and its extension to an artificial
V (H)-special solution. The artificial links are purple. The r-bad interval is always V (H). The a-bad
interval is shown in cyan. The b-bad and c-bad intervals are green, and the d-bad interval is dark blue. Note
that lca({e, f}) = e and lca({e, f, d}) = b.

When these artificial links are added to F⃗0, we obtain an associated V (H)-special solution F⃗ ′.
Observe that for a terminal v, the set of descendants of v in F⃗ ′ (including v itself) is exactly its
v-bad interval Iv.

Definition 3.8.3 (Extended Least Common Ancestor Function). Suppose F⃗0 is an R-special so-
lution and A ⊆ V (H). Then the least common ancestor of A with respect to F⃗0 is

lca(A) := lcaF⃗ ′(A),

where lcaF⃗ ′(A) is the least common ancestor of A in the artificial solution F⃗ ′.

57

Notice that the above definition coincides with the standard least common ancestor function with
respect to F⃗0 on sets A which consist only of terminals.

Now we can state the key Lemma 3.8.4. For a set of hyper-links S, let V (S) :=
⋃

ℓ∈S ℓ.

Lemma 3.8.4. If F⃗0 is an R-special directed solution to SRAP and S ⊆ L is a collection of
hyper-links which form a connected component in the hyper-link intersection graph, then

dropF⃗0
(S) =

(⋃
v∈V (S)

δ−
F⃗0
(v)
)
\ δ−

F⃗0
(lca(V (S))).

Proof. First, observe that if V (S)∩R = ∅, then both sets in the lemma statement are empty, and
the lemma is true. So assume that V (S) contains some terminal.

Since δ−
F⃗0
(v) = ∅ whenever v ̸∈ R, we consider some vertex v ∈ V (S) ∩ R. Suppose that v ̸=

lca(V (S)). Since v ∈ V (S), there must be some vertex u in V (S) which is not a descendant of
v with respect to F⃗ ′. Since the set of descendants of v in F⃗ ′ is exactly the v-bad interval Iv, we
have that u is a v-good vertex. Thus, by Lemma 3.6.6, we have that δ−

F⃗0
(v) ∈ dropF⃗0

(S), since S

connects v to a v-good vertex via the hyper-link intersection graph.

On the other hand, if v = lca(V (S)), then all other vertices in V (S) are descendants of v in F⃗ ′.
Again, the set of descendants of v in F⃗ ′ is its v-bad interval Iv, so all vertices in V (S) are v-bad,
and so by Lemma 3.6.6, δ−

F⃗0
(v) is not contained in dropF⃗0

(S).

In the following, we will build up a solution by considering subproblems defined on intervals of the
ring. As such we need a definition of a hyper-link set which is an α-thin with respect to an interval
C ⊆ V (H).

For a ring H = (V (H), E), let the set of 2-cuts not containing the root be denoted by C′ := {C ⊆
V (H) : |δE(C)| = 2, r ̸∈ C}. Recall that a collection of hyper-links K is α-thin if there exists a
maximal laminar subfamily D of C′ such that there are at most α hyper-links in K which cover C
for each C ∈ D.

Definition 3.8.5. A collection of hyper-links K is (α,C)-thin if there exists a maximal laminar
subfamily D of C′ on ground set C, such that for each C̄ ∈ D, there are at most α hyper-links from
K which cover C̄.

We will use the notation δ(C) to denote the set of hyper-links which cover the cut C ∈ C′. We
maintain a table T of polynomial size with a table entry T [C,B, T , ϕ, ψ] where:

• C ∈ C′,

• B ⊆ δ(C) is of size at most α,

• T is a partition of B,

• ϕ : T → V ,

• ψ : T → {0, 1}.

Note that there are |V (H)|2 choices for C. Since there are at most |V (H)|γ possible γ-restricted
hyper-links, there are at most |V (H)|γα choices for B. Finally, if α is a constant then there are

58

constantly many choices for T and ψ, and polynomially many choices for ϕ. Thus, the overall
dimensions of the table are polynomial.

We now describe how to interpret a subproblem corresponding to a table entry T [C,B, T , ϕ, ψ]. A
subset S ⊆ L of hyper-links realizes this table entry if:

• The hyper-links in S contain some vertex of C,

• δS(C) = B,

• T consists of the non-empty sets Si ∩ B, where S1, . . . , Sq are the connected components of
S in the hyper-link intersection graph,

• For each set Si ∩B ∈ T , we have ϕ(Si ∩B) = lca(V (Si)),

• For each set Si ∩B ∈ T , we have ψ(Si ∩B) = 1 if and only if ϕ(Si ∩B) ∈ V (Si).

Thus, the table entry T [C,B, T , ϕ, ψ] contains the maximizer and maximum value of

c̃

(
dropF⃗0

(S) ∩
⋃
v∈C

δ−
F⃗0
(v)

)
− c(S)

over all (α,C)-thin collections of hyper-links S which realize this table entry.

Traub and Zenklusen show how to compute the table entry T [C,B, T , ϕ, ψ] from previously com-
puted ones in polynomial time. At a high level, we will enumerate over all possible table entries
whose solutions can be combined to yield a solution to T [C,B, T , ϕ, ψ]. This is done by guessing a
partition of C into two neighboring cuts C1 and C2 from C′ (notice that there are at most |V (H)|
choices for this partition), and choices of B1 and B2 which are compatible with each other and also
respect the (α,C)-thinness. In particular, we must have δB2(C1) = δB1(C2) and |δB1∪B2(C)| ≤ α.
Finally, we must have Ti, ϕi and ψi interact in such a way as to yield a solution to T [C,B, T , ϕ, ψ]
when their solutions are combined.

Suppose (C1, B1, T1, ϕ1, ψ1) and (C2, B2, T2, ϕ2, ψ2) are table entries such that C1 and C2 are ad-
jacent intervals, δB2(C1) = δB1(C2) and |δB1∪B2(C1 ∪ C2)| ≤ α. Then the merger of these table
entries is defined as (C,B, T , ϕ, ψ), where C = (C1 ∪ C2), B = δB1∪B2(C), and T , ϕ, and ψ are
defined as follows:

Consider the graph with vertex set B1 ∪ B2 where x and y are adjacent if either: x and y are
intersecting hyper-links, x and y are in B1 and in the same set in the partition T1, or x and y are
in B2 and in the same set of the partition T2. Then T is the partition of B1 ∪ B2 corresponding
to the connected components of this graph. For any T ∈ T which by definition is equal to the
union of some parts (T 1

1 , T
1
2 , . . . , T

1
q1) from T1 and some parts (T 2

1 , T
2
2 , . . . , T

2
q2) from T2, define

ϕ(T) = lca(ϕ1(T
1
1), . . . , ϕ1(T

1
q1), ϕ2(T

2
1), . . . , ϕ2(T

2
q2)). Finally, let ψ(T) = 1 if there exists some T i

j

with ψi(Tj) = 1 and ϕi(T
i
j) = ϕ(T). With this definition, if S1 is a set of hyper-links which realizes

(C1, B1, T1, ϕ1, ψ1) and S2 realizes (C2, B2, T2, ϕ2, ψ2), then S1 ∪ S2 realizes their merger.

Thus, to compute the optimal value for table entry T [C,B, T , ϕ, ψ], we can enumerate over pairs
(C1, B1, T1, ϕ1, ψ1) and (C2, B2, T2, ϕ2, ψ2) whose merger is (C,B, T , ϕ, ψ). Let π(C,B, T , ϕ, ψ)
denote the optimal value for this table entry. Then

π(C,B, T , ϕ, ψ) = max

{
π(Q1) + π(Q2) + c(B1 ∩B2) +

∑
u∈UQ1,Q2

c̃(δ−
F⃗0
(u)) :

59

Q1 = (C1, B1, T1, ϕ1, ψ1), and

Q2 = (C2, B2, T2, ϕ2, ψ2) have merger (C,B, T , ϕ, ψ)

}
,

where UQ1,Q2 = {ϕi(T) : T ∈ Ti with ψi(T) = 1 and ϕi(T) ∈ Ci, for i = 1, 2} \ {
⋃

T∈T ϕ(T)}.
Furthermore, the optimal solution S to (C,B, T , ϕ, ψ) will be S1 ∪ S2 where S1 is the optimizer of
Q∗

1 and S2 is the optimizer of Q∗
2 for the best choice of Q∗

1 and Q∗
2 in the above maximization.

The overall solution to the problem will be found in some table entry with C = V (H) \ r. Since
the table has polynomially many entries, and each can be filled in polynomial time, this proves
Theorem 3.8.1.

3.9 A (1.5 + ε)-approximation for k-SAG

In this section, we show how to use the local search framework introduced in [TZ22c] to give a
(1.5 + ε)-approximation algorithm for SRAP, in the case that R = V (H). By the arguments in
§ 3.3, this yields a (1.5 + ε) approximation algorithm for k-SAG. See Algorithm 4.

The algorithm begins by computing an arbitrary SRAP solution S. For each link f ∈ S, we will
construct a witness set Wf which initially consists of two directed links. In each iteration of the
algorithm, we add a collection of links to the solution along with their associated witness sets, and
drop directed links from other witness sets. If the witness set of a link f becomes empty then f is
removed from S. Throughout the algorithm, we maintain that F⃗ :=

⋃
f∈SWf is a feasible directed

solution. The algorithm terminates when there is no local move which substantially improves the
potential function.

We now define how the initial witness sets are constructed from our arbitrary starting solution S.
Suppose a link f is in a full component (U ′, S′), where U ⊆ V and S′ ⊆ S. Consider the eulerian
tour traversing each link in S′ exactly twice. This tour induces an ordering on the ring nodes in
U ′ ∩ V (H), say {a1, . . . , ak}. Suppose that f ∈ S′ is traversed on the Euler subpath from ai to
ai+1 and on the subpath from aj to aj+1 (where we take ak+1 := a1). Then the witness set Wf will
consist of the two directed links (ai, ai+1) and (aj , aj+1).

Note that F⃗ :=
⋃

f∈SWf is a feasible directed solution. We now update the directed links in

the witness sets by iteratively shortening links as long as F⃗ remains feasible. By Theorem 2.6
in [TZ22a], at the end of this shortening process, F⃗ is an R-special directed solution.

Now, we define a potential function Φ defined on a solution S along with its witness sets.

Φ(S) :=
∑

f :|Wf |=1

c(f) +
3

2

∑
f :|Wf |=2

c(f).

We also define a weight function for the directed links in witness sets. For a directed link u in some
Wf , we define

c̄(u) :=
∑

f :u∈Wf

c(f)

|Wf |
.

Our algorithm then proceeds in step 6 by choosing an α-thin collection of hyper-links maximizing
c̄(dropF⃗ (Z)) − 1.5 · c(Z). The links in the full components corresponding to these hyper-links
are added to our solution S, while the directed links in dropF⃗ (Z) are removed from witness sets.

60

er

r

er

r

Figure 3.7: An example of a SRAP instance on the left, where all three undirected links have cost 1. The
grey nodes are terminals. The completed instance is shown on the right, where the blue links have cost 1 and
the orange links have cost 2 (only the directed links are shown). The dashed blue arcs form a feasible directed
solution of cost 3, but there is no R-special solution of cost at most 3.

Finally, witness sets are constructed for the new undirected links which were added to the solution,
and all directed links in witness sets are shortened so that F⃗ becomes an R-special solution once
more.

Remark 3.9.1. In part (iv) of step 6 of Algorithm 4, it is crucial that V (H) = R, since in this
case, any feasible directed solution can be iteratively shortened to obtain an R-special solution of
at most the cost. This does not hold if R ̸= V (H), see Figure 3.7.

Notice that Theorem 3.8.1 implies that the maximization step in step 6 of Algorithm 4 can be per-
formed in polynomial time. The following lemma, whose proof is identical to Lemma 9.3 in [TZ22a],
shows that the algorithm will terminate after polynomially many iterations. Let OPT denote the
cost of the optimal augmentation.

Lemma 3.9.2. Algorithm 4 runs for at most

ln
(1.5 · c(S)

OPT

)
· 6|R|
ε

iterations where S is the initial SRAP solution.

Finally, the solution returned has cost at most (1.5 + ε)OPT.

Lemma 3.9.3. At the end of Algorithm 4, we have c(S) ≤ (1.5 + ε)OPT.

The proof of the above lemma uses the same potential function analysis which is has been used
in [RZZ23][TZ22a][TZ22c], so we do not reproduce it again here. These yield the main result of
this section:

Theorem 3.9.4. Algorithm 4 is a (1.5 + ε)-approximation algorithm for SRAP when R = V (H).

Corollary 3.9.5. There is a polynomial time (1.5 + ε)-approximation algorithm for k-SAG.

61

Algorithm 4: Local search algorithm for SRAP

4.1 Input: A complete instance of SRAP with graph G = (V,E∪̇L), ring H = (R,E), and
c : L→ R. Also a constant 1 ≥ ε > 0.

4.2 Output: A solution S ⊆ L with c(S) ≤ (1.5 + ε)OPT.
4.3

1. Compute an arbitrary SRAP solution S ⊆ L. Construct witness sets Wf for each f ∈ S so

that F⃗ :=
⋃

f∈SWf is an R-special directed solution.

2. Let ε′ := ε/2
1.5+ε/2 and γ := 2⌈1/ε

′⌉.

3. For each A ⊆ R where |A| ≤ γ, compute the cheapest full component joining A and denote
the cost by cA.

4. Create an instance of γ-restricted Hyper-SRAP on ring H = (R,E) with hyper-links
L = {ℓA : A ⊆ R, |A| ≤ γ}. Set the cost of hyper-link ℓA to be cA.

5. Let α := ⌈8/ε⌉

6. Iterate the following as long as Φ(S) decreases in each iteration by at least a factor (1− ε
12n):

(i) Compute the α-thin subset of hyper-links Z ⊆ L maximizing c̄(dropF⃗ (Z))− 1.5 · c(Z),
where F⃗ :=

⋃
f∈SWf .

(ii) Update the witness sets by replacing each Wf with Wf \ dropF⃗ (Z).
(iii) Update S by adding all links of full components corresponding to the hyper-links in Z.

(iv) Shorten directed links in F⃗ to obtain an R-special solution. If Wf = ∅ for some f ∈ S,
then remove f from S.

7. Return S.

62

Chapter 4

On Small Depth Tree Augmentations

In this chapter, we study the integrality gap of the ODD-LP for Weighted Tree Augmentation
Problem for general link costs. We show that the integrality gap of the ODD-LP relaxation for
the (weighted) Tree Augmentation Problem for a k-level tree instance is at most 2 − 1

2k−1 . For

2- and 3-level trees, these ratios are 3
2 and 7

4 respectively. Our proofs are constructive and yield
polynomial-time approximation algorithms with matching guarantees.

This chaper is based on joint work with Ojas Parekh and R. Ravi, and appeared in Operations
Research Letters [PRZ22].

While TAP is well studied in both the weighted and unweighted case [FJ81, KT93, Rav94, CN13a,
CG15, KN16, Adj17, FGKS18, GKZ18], it is NP-hard even when the tree has diameter 4 [FJ81]
or when the set of available links form a single cycle on the leaves of the tree T [CJR99], and is
also APX-hard [KKL04]. Weighted TAP was one of the simplest network design problems without
a better than 2-approximation in the case of general (unbounded) link costs and arbitrary depth
trees, until very recently [TZ21a, TZ21b]. For the case of n-node trees with height k, Cohen and

Nutov [CN13a] gave a (1 + ln 2) ≃ 1.69-approximation algorithm that runs in time n3
k · poly(n)

using an idea of Zelikovsy for approximating Steiner trees. Very recently, this approach has been
extended to provide an approximation to the general case of the problem with the same performance
guarantee by Traub and Zenklusen [TZ21a]. A follow-up paper by the same authors [TZ21b]
improved the approximation ratio to nearly 1.5. However, these papers do not provide any new
results on the integrality gap of some natural LP relaxations for the problem that we discuss next.

4.1 Preliminaries

4.1.1 The cut-LP Relaxation

TAP can also be viewed as a set covering problem. The edges of the tree T define a laminar
collection of cuts that are the elements to be covered using sets represented by the links. A link ℓ
is said to cover an edge e if the unique cycle of ℓ+T contains e. Here we use cov(e) for a tree edge
e to denote the set of links which cover e. The natural covering linear programming relaxation for
the problem, cut-LP, is a special instance of a set covering problem with one requirement (element)
corresponding to each cut edge in the tree. Since the tree edges define subtrees under them (after
rooting it at an arbitrary node) that form a laminar family, this is also equivalent to a laminar

63

cover problem [CJR99].

min
∑
ℓ∈E

cℓxℓ

x(cov(e)) ≥ 1 ∀e ∈ E(T) (4.1)

xℓ ≥ 0 ∀ℓ ∈ E (4.2)

Fredrickson and Jájá showed that the integrality gap for cut-LP can not exceed 2 [FJ81] and also
studied the related problem of augmenting the tree to be two-node-connected (biconnectivity versus
bridge-connectivity augmentation) [FJ82]. Cheriyan, Jordán, and Ravi, who studied half-integral
solutions to cut-LP and proved an integrality gap of 4

3 for such solutions, also conjectured that the
overall integrality gap of cut-LP was at most 4

3 [CJR99]. However, Cheriyan et al. [CKKK08] later
demonstrated an instance for which the integrality gap of cut-LP is at least 3

2 .

4.1.2 ODD-LP Relaxation

Fiorini et al. studied the relaxation consisting of all {0, 12}-Chvátal-Gomory cuts of the cut-
LP [FGKS18]. We call their extended linear program the ODD-LP.

We define δ(S) for S ⊂ V as the set of all links and edges with exactly one endpoint in S, and
recall that cov(e) for a tree edge e is the set of links that cover e. We use E(T) to refer to the set
of tree edges, and L is the set of links, E(G) \ E(T).

min
∑
ℓ∈E

cℓxℓ

x(δ(S) ∩ L) +
∑

e∈δ(S)∩E(T)

x(cov(e)) ≥ |δ(S) ∩ E(T)|+ 1 ∀S ⊆ V, |δ(S) ∩ E(T)| is odd (4.3)

xℓ ≥ 0 ∀ℓ ∈ E

We describe here the validity of the constraints in ODD-LP using a proof due to Robert Carr.
Consider a set of vertices S such that |δ(S)∩E(T)| is odd. By adding together the edge constraints
for δ(S) ∩ E(T) we get: ∑

e∈δ(S)∩E(T)

x(cov(e)) ≥ |δ(S) ∩ E(T)|

Now we can add any non-negative terms to the left hand side and still remain feasible. Therefore

x(δ(S) ∩ L) +
∑

e∈δ(S)∩E(T)

x(cov(e)) ≥ |δ(S) ∩ E(T)|

is also feasible. Now consider any link ℓ. If xℓ appears an even number of times in
∑

e∈δ(S)∩E(T) x(cov(e))
then ℓ is not in δ(S). Similarly, if xℓ appears an odd number of times in

∑
e∈δ(S)∩E(T) x(cov(e))

then ℓ is in δ(S). So, the coefficient of every xℓ on the left hand side of this expression is even. In
particular, for any integer solution the left hand side is even and the right hand side is odd. There-
fore, we can strengthen the right hand side by increasing it by one, and the resulting constraint
will still be feasible for any integer solution. The constraint,

x(δ(S) ∩ L) +
∑

e∈δ(S)∩E(T)

x(cov(e)) ≥ |δ(S) ∩ E(T)|+ 1

64

is thus valid for any integer solution to TAP as desired.

We prove a lemma about how a transformation of a feasible solution to the ODD-LP that we call
a link subdivision continues to preserve feasibility, that we use later in our integrality gap proofs.

Lemma 4.1.1. Let (T, L) be a TAP instance and let x̄ be a feasible solution to ODD-LP(T, L).
Fix some link ℓ = (a, b) ∈ L, and let (a, v1, . . . , vk, b) be an ordered sequence of distinct nodes on the
path from a to b in T . Let Λ = {(a, v1), (v1, v2), . . . (vk−1, vk), (vk, b))} and let L′ = (L \ (a, b)) ∪ Λ
(Call this a link subdivision). Then the solution ȳ obtained from x̄ by setting ȳℓ = x̄(a,b) for all
ℓ ∈ Λ is feasible for ODD-LP(T, L′).

Proof. Fix a set of vertices S ⊆ V such that |δ(S) ∩ E(T)| is odd. Since x̄ is feasible, we have

x̄(δ(S) ∩ L) +
∑

e∈δ(S)∩E(T)

x̄(cov(e)) ≥ |δ(S) ∩ E(T)|+ 1.

Since the links in Λ cover exactly the set of edges along the path between a and b in T , we have∑
e∈δ(S)∩E(T)

x̄(cov(e)) =
∑

e∈δ(S)∩E(T)

ȳ(cov(e)).

We now consider two cases. If a, b ∈ S, then (a, b) ̸∈ δ(S) ∩ L, and so clearly ȳ(δ(S) ∩ L) ≥
x̄(δ(S) ∩ L)). Otherwise, suppose without loss of generality that a ∈ S and b ̸∈ S. Then the path
between a and b in T contains an odd number of edges in δ(S)∩E(T). Each link in Λ which is not
δ(S) ∩ L covers an even number of edges in δ(S) ∩ E(T). Therefore, there must be some link ℓ in
Λ contained in δ(S) ∩ L. This link has value ȳℓ = x̄(a,b), hence we have

ȳ(δ(S) ∩ L) ≥ x̄(δ(S) ∩ L),

and the claim follows.

We will use the following theorem about the ODD-LP [FGKS18]. For a choice of a root r, we call
links which connect two different components of T −r as cross-links, and those that go from a node
of T to its ancestor as up-links.

Theorem 4.1.2 ([FGKS18], Theorem 1.1). The ODD-LP is integral for weighted TAP instances
that contain only cross- and up-links.

The integrality of the formulation is shown by demonstrating that the constraint matrix is an
example of a binet matrix [AK06, AKPP07], a generalization of network matrices that are a well-
known class of totally unimodular matrices. Moreover, while general Chvátal-Gomory closures are
NP-hard to optimize over, these restricted versions over half-integral combinations can be optimized
in polynomial time [CF96]. Such instances with only cross- and up-links are informally called “star-
shaped” with the center of the star being the chosen root, so we will refer to the above result as
saying that the ODD-LP for star-shaped instances centered at a root have integrality gap 1 and
solutions to such instances can be obtained in polynomial time.

Without loss of generality, we may consider TAP instances where all links go between two leaves
[IR17]. We reproduce the proof here for completeness.

Lemma 4.1.3. Given an instance (T, L, c) of weighted TAP, there is a corresponding, polynomial-
sized instance (T ′, L′, c′) with all links having both endpoints as leaves, such that there is a cost-
preserving bijection between the solutions to the two instances.

65

r

u

v

r

u

v

u′u′′

v′
v′′

Figure 4.1: Transformation to a leaf to leaf instances

Proof. The proof proceeds by a simple graph reduction. Suppose we are given an instance defined
by a graph G with associated tree T for the weighted TAP. We create a new instance of the leaf-
to-leaf version as follows: For every internal node u in the original tree T , we add two new leaf
nodes u′ and u′′ both adjacent to u to get a new tree T ′. For every link f = (v, u) in the original
instance, we reconnect the link to now end in the leaf u′ rather than the internal node u in the
tree T ′. Thus, if both v and u are internal nodes, the new link is (v′, u′); if only u is internal, the
new link is (v, u′) and if both are leaves, the new link is the same (u, v) as in G. Note that the
new graph G′ is a leaf-to-leaf instance. In addition, for every internal node u in the original tree T ,
we add a new link of zero cost between u′ and u′′ - this will serve to cover the newly added edges
(u, u′) and (u, u′′) without changing the coverage of any of the edges in the original tree T . See
Figure 4.1.

Remark 4.1.4. The cost-preserving bijection described above can be extended to map fractional
solutions of odd-LP(T, L) to odd-LP(T ′, L′). In other words, every weighted TAP problem can be
reduced to an instance where all links go between a pair of leaves without loss of generality for
investigating approximation ratios for the problem and integrality gaps of the odd-LP.

Note that given a rooted tree of k levels (i.e., the maximum distance of any leaf from the root is
k), the above transformation results in a leaf-to-leaf instance also with k levels.

4.2 Improved Integrality Gaps for Trees of depth 2 and 3

Theorem 4.2.1. The integrality gap of the ODD-LP for a two-level tree instance is at most 3
2 . A

solution with this approximation ratio for these instances can be obtained in polynomial time.

Proof. Given a two-level TAP instance on tree T and links L, we first show how to transform the
instance into two instances that we can solve exactly. We then apply the same transformation to
the components of any integral solution A to obtain feasible solutions to the two new instances, the
better of which has value at most 3

2 ·c(A). We will then use the same reductions on fractional feasible
solutions to the ODD-LP, and use Lemma 4.1.1 to show that the resulting star-shaped instances
are feasible for the ODD-LP and then use Theorem 4.1.2 to arrive at the stated integrality gap and
resulting algorithm.

66

r

c1 c2

T, L

r

c1 c2

T, L1

Figure 4.2: Transformation to a star-shaped instance for the root

We say that the root r is at level 1 and its children {c1, c2, . . . , cd} are internal nodes at level 2,
where d is the number of non-leaf children of the root. First using Lemma 4.1.3, we assume that
all links go between a pair of leaves. We partition L into L1∪̇L2, where Li is the set of links whose
least common ancestor (henceforth lca) is a node at level i in the tree.

We will create two new instances (T, L1) and (T, L2). The first instance (T, L1) is obtained by
replacing every link (u, v) in L2 with lca c say, with two up-links (u, c) and (v, c) of the same cost.
Notice that (T, L1) is a star-shaped instance with root r. The second instance (T, L2) is obtained
by replacing every link (u, v) in L1 with lca the root r, with two up-links (u, r) and (r, v) of the
same cost. (T, L2) can be decomposed into d + 1 disjoint star shaped instances: d of these are
defined by the star around each non-leaf child of the root, and the last is the star defined by the
root and its leaf-children. Thus, (T, L2) is a disjoint collection of star-shaped instances which can
be solved by solving each of these d + 1 induced star-shaped instances separately and taking the
union of their solutions. See Figures 4.2 and 4.3.

Given an optimal solution A to (T, L), we now construct two solutions A1 and A2, feasible to (T, L1)
and (T, L2) respectively, by applying the same reduction as above to the corresponding components
in A. Let A = A1∪̇A2 where Ai the set of links whose lca is a node in level i of the tree. To create
A1, we replace each link (u, v) in A2 with the two up-links (u, c) and (v, c) in L1. Note that this set
of links along with A1 gives a feasible solution to (T, L1) and has cost c(A1) + 2c(A2). To create
A2, we replace each link (u, v) in A1 with the two up-links (u, r) and (v, r) in L2. Note that this
set of links along with A2 gives a feasible solution to (T, L2) and has cost 2c(A1) + c(A2).

As described above, each of A1 and A2 can be transformed into a feasible solution to (T, L) with
the same cost. Therefore, by taking the better of the two, there is a solution of cost at most
min{c(A1) + 2c(A2), 2c(A1) + c(A2)} ≤ 3

2c(A).

Note that the link replacements in both transformations are link subdivisions. Hence, by Lemma 4.1.1,
we can apply the same transformation to any fractional solution feasible to ODD-LP(T, L) to ob-
tain two fractional solutions feasible to ODD-LP(T, L1) and ODD-LP(T, L2) respectively. Since
the resulting star shaped instances have integrality gap 1 by Theorem 4.1.2, the claims about the
integrality gap and a polynomial-time approximation algorithm with this ratio also follow.

Theorem 4.2.2. The integrality gap of the odd-LP for a three-level tree instance is at most 7
4 . A

solution with this approximation ratio for these instances can be obtained in polynomial time.

67

r

c1 c2

T, L

r

c1 c2

T, L2

Figure 4.3: Transformation to three star-shaped instances around the root and its two internal children

Proof. As before, we first show how to transform the instance into new instances, and show that
the same applied to any integral solution A gives a solution of value at most 7

4 · c(A). Again, the
same reduction will also apply to fractional solutions that obey the ODD-LP constraints to prove
the claim.

Using Lemma 4.1.3, we assume that all links go between a pair of leaves. We partition L into
L1∪̇L2∪̇L3, where Li is the set of links whose lca is a node at level i in the tree. We say that the
root r is at level 1 and its non-leaf children {c1, c2, . . . , cd} are at level 2, and the children of these
nodes that are internal nodes are in level 3 of the tree. We will create three new instances (T, L1),
(T, L2) and (T, L3) as follows.

• The first instance (T, L1) is obtained by replacing every link (u, v) in L2 ∪ L3 with lca c say,
with two up-links (u, c) and (v, c) of the same cost. See Figure 4.4. Notice that (T, L1) is a
star-shaped instance with root r.

• The second instance (T, L2) is obtained by replacing every link (u, v) in L1∪L3 with lca c say,
with two up-links (u, c) and (c, v) of the same cost. Notice, that (T, L2) can be decomposed
into d + 1 different star shaped instances. One of these star-shaped instances is a one-level
instance centered at the root and consisting of the root and all of its leaf children. Each
of the remaining d instances corresponds to a non-leaf child of the root vi, consisting of the
whole subtree Ti rooted at vi and its edge to the root (vi, r). Notice that these instances are
pairwise disjoint and are star-shaped with centers vi. See Figure 4.5.

• Finally, the third instance (See Figure 4.6), is obtained as follows. For each link (a, b) ∈ L2,
with lca c say, we replace it with two up-links (a, c) and (b, c) of the same cost. The interesting
transformation is for links in L1, where we now make up to three copies. For every link
(a, b) ∈ L1, let ca and cb denote the ancestor of a and b respectively in level 2. (if either
a or b is in level 2 itself, then its ancestor in level 2 is itself). We now add three links
(a, ca), (ca, cb), (cb, b) of the same cost as (a, b). Again, this instance can be solved exactly
by decomposing it into pairwise disjoint star-shaped instances: one for each stars around the
internal nodes, say v1, . . . , vq in level 3, and one more tree around the root consisting of the
set of all tree edges not in the stars around the vi’s.

Given an optimal solution A to (T, L), we now construct three solutions A1, A2 and A3, feasible to
(T, L1), (T, L2) and (T, L3) respectively. Let A = A1∪̇A2∪̇A3 where Ai the set of links whose lca is
a node in level i of the tree. The solutions A1, A2 and A3 are obtained from by transforming the
links in A exactly as we transformed the corresponding type of links in L to obtain L1, L2 and L3.
Finally, each of A1, A2 and A3 can be transformed into a feasible solution to (T, L) with the same
cost. Therefore, by taking the best of the three, we can find a solution in polynomial time with cost
at most min{c(A1) + 2c(A2) + 2c(A3), 2c(A1) + c(A2) + 2c(A3), 3c(A1) + 2c(A2) + c(A3)} ≤ 7

4c(A).

68

r

a b

ca cb

v2v1

T, L

r

a b

ca cb

v2v1

T, L1

Figure 4.4: Transformation to a star-shaped instance centered at the root

r

a b

ca cb

v2v1

T, L

r

a b

ca cb

v2v1

T, L2

Figure 4.5: Transformation to three star-shaped instances centered at the root and its two internal children

Note that the link replacements in both transformations are link subdivisions. Hence, by Lemma 4.1.1,
we can apply the same transformation to any fractional solution feasible to ODD-LP(T, L) to ob-
tain three fractional solutions feasible to ODD-LP(T, L1), ODD-LP(T, L2), and ODD-LP(T, L3)
respectively. Since the resulting star shaped instances have integrality gap 1 by Theorem 4.1.2, the
claims about the integrality gap and a polynomial-time approximation algorithm with this ratio
also follow.

4.3 Integrality gap for k-level trees

With the above cases, we can now calculate an upper bound on the value of the integrality gap for
general k-level trees where the depth of any leaf from the root is k.

Theorem 4.3.1. The integrality gap of the ODD-LP for a k-level tree instance is at most 2− 1
2k−1 .

A solution with this approximation ratio for these instances can be obtained in polynomial time
for any fixed k.

69

r

a b

ca cb

v2v1

T, L

r

a b

ca cb

v2v1

T, L3

Figure 4.6: Transformation to three star-shaped instances centered at the root and the stars around the two
internal nodes in level 3

Proof. We will show how to transform a given k-level TAP instance (T, L) into k new instances,
and show that the same applied to any integral solution A gives a solution of value at most
(2 − 1

2k−1) · c(A). Again, the same reduction will also apply to fractional solutions that obey
the ODD-LP constraints to prove the claim.

Partition the links in L into subsets of links L = L1∪̇L2 . . . ∪̇Lk where Lℓ is the subset whose
lca is a node in level l of the tree for ℓ = 1, . . . , k. As before, we set up k new TAP instances
(T, L1), . . . , (T, Lk), where in (T, Lℓ) we preserve the links in Lℓ.

For ℓ = 1, we replace each link (u, v) in L2, . . . , Lk with two links (u, c) and (v, c), where c is the
lca of u and v, yielding a star-shaped instance (T, L1).

Suppose 1 < ℓ ≤ k. For any link (a, b) ∈ Lℓ−1∪
⋃

p>ℓ Lp, we replace it with the two links (a, lca(a, b))
and (b, lca(a, b)). For links (a, b) ∈ Lq for 1 < q < ℓ−1, let the ancestors of a and b in level ℓ−1 be ua
and ub respectively, if they exist. We replace (a, b) with one of the following sets, with at most four
links: {(a, ua), (ua, lca(ua, ub)), (lca(ua, ub), ub), (ub, b)}, or {(a, lca(a, ub)), (lca(a, ub), ub), (ub, b)},
or {(a, ua), (ua, lca(ua, b)), (lca(ua, b), b)}, or {(a, lca(a, b)), (lca(a, b), b)}, depending on which of ua
and ub exist. Analogously, for q = 1, we instead use the following sets, with at most three links:
{(a, ua), (ua, ub), (ub, b)}, {(a, ub), (ub, b)}, {(a, ua), (ua, b)}, {(a, b)}. Denote the obtained instance
by (T, Lℓ).

We now show that (T, Lℓ) can be decomposed into pairwise disjoint star-shaped instances, thereby
allowing us to solve these instances exactly. For every internal node v at level ℓ, we consider the
instance on the subtree below it, along with the edge to its parent. These will be star-shaped
instances with centers v. In addition, we consider a final instance, which will be a star-shaped
instance around the root, whose tree edges are disjoint from the others.

We will show that each link is a cross-link or an up-link in one of the star-shaped instances. First
consider the instances around the internal nodes v in level ℓ. Links in Lℓ are already cross-links
in these. Links in Lp for p > ℓ have been replaced with two links that become up links in these
instances. Consider a link (a, b) ∈ Ll−1, such that va and vb are the ancestors of a and b respectively
that are in level l. We replaced this link with the two links (a, lca(a, b)) and (b, lca(a, b)). Now
lca(a, b) is a parent of va and vb since (a, b) ∈ Ll−1 so these links form cross links for the star-shaped
instances around va and vb.

70

All the tree edges not in any of these star-shaped instances are considered in a final star-shaped
instance rooted at r. For links (a, b) ∈ Lq for 1 < q < ℓ − 1, let the ancestors of a and b in level
ℓ − 1 be ua and ub respectively, if they exist. For q > 1, all the links in these links become cross
links for the star-shaped instances around the level ℓ internal nodes or up links for the instance
rooted at r. The same holds for links in L1, except that these sets also include cross links for the
instance rooted at r.

Given an optimal solution A to (T, L), we can construct k solutions A1, A2, . . . , Ak, feasible to
(T, L1), (T, L2), . . . , (T, Lk) respectively. To get Ak, we simply apply the same transformations to
the links of A which were applied to L to obtain Lk. Let A = A1∪̇A2, · · · , ∪̇Ak, where Ai is the set
of links in A with lca at level i, and let ci denote the cost of the links in Ai. Each A

ℓ corresponds
to a solution to (T, L) with at most the cost.

Based on the above construction, an upper bound on the cost of this set of candidate solutions is

C1 = c1 + 2c2 + 2c3 + 2c4 + . . .+ 2ck, if ℓ = 1

C2 = 2c1 + c2 + 2c3 + 2c4 + . . .+ 2ck, if ℓ = 2

C3 = 3c1 + 2c2 + c3 + 2c4 + . . .+ 2ck, if ℓ = 3

Cℓ = 3c1 + 4c2 + . . .+ 4cℓ−2 + 2cℓ−1 + cℓ + 2cℓ+1 + . . .+ 2ck, if 3 < ℓ ≤ k.

The best of these solutions has cost at most min{C1, . . . , Ck} ≤
∑k

i=1 λiCi for any setting of weights

such that λi ≥ 0 for all i and
∑k

i=1 λi = 1.

Let J(n) := 2n−(−1)n

3 . Let λi =
1

2k−1
J(k− i+ 1) for i ≥ 2. If k is even, let λ1 = λ2. If k is odd, let

λ1 = λ2 + 1. With this choice of λ = (λ1, . . . , λk), it is straightforward to verify that

k∑
i=1

λiCi =

(
2k − 1

2k−1

)
(c1 + . . .+ c2).

The key observation to verify this is that J(n) satisfies the recurrence J(n) = J(n− 1)+ 2J(n− 2)
for n ≥ 2, which reflects the changes in the coefficients of cℓ, cℓ−1 and cℓ−2 in going from Cℓ−1 to Cℓ.
With J(1) = 1 and J(0) = 0, this defines the Jacobsthal sequence, see (https://oeis.org/A001045).

Thus, we have min{C1, . . . , Ck} ≤
(
2− 1

2k−1

)
(c1 + . . .+ ck) =

(
2− 1

2k−1

)
c(A).

As before, all link replacements correspond to link subdivisions. Thus, by Lemma 4.1.1, we can
apply the same transformation to any fractional solution feasible to ODD-LP(T, L) to obtain k
fractional solutions feasible to ODD-LP(T, Lℓ) for each ℓ = 1, . . . , k. Since the resulting star
shaped instances have integrality gap 1 by Theorem 4.1.2, the claims about the integrality gap and
a polynomial-time approximation algorithm with this ratio also follow.

While the above analysis shows integrality gaps of the ODD-LP converging to 2 as the depth of
the tree grows, the main open question in our opinion is to show that the integrality gap of 3

2 that
we showed for 2-level trees is indeed the upper bound for all trees.

71

Chapter 5

The Base Augmentation Problem

In this chapter, we study the Base Augmentation Problem. This is based on joint work with
Madhusudhan Reddy Pittu. Let M = (E, I) be a matroid with ground set E and independent
sets I. Recall that the rank function rM : 2E → Z≥0 indicates the size of the largest independent
set which can be found within a set S ⊆ E. The rank of the matroid is defined as rM (E) and is
denoted as r.

A subset S ⊆ E is 1-robust if rM (S \ e) = r for all e ∈ S. Notice that in order to be 1-robust, S
itself must be rull rank. Hence, this definition essentially states that S is 1-robust if it is still a full
rank set even after any single element is removed.

Problem 5.0.1 (Base Augmentation Problem). We are given a base B ⊆ E of a matroid M =
(E, I), and a cost function c : (E \B)→ R≥0. The goal is to choose a minimum cost set F ⊆ E \B
so that B ∪ F is a 1-robust set.

We can formulate BAP as a covering problem. When an element e ∈ (E \B) is added to base B, a
unique circuit is present in B ∪ e. This is called the fundamental circuit of e with respect to B.
We define an analogous fundamental path of an element e with respect to B to be the restriction
of its fundamental circuit to B. For a fixed base, we denote the fundamental path of element e by
Pe.

With these definitions, we can phrase the BAP problem as follows. Let A be the {0, 1}-matrix
whose columns are indexed by the elements of rows are indexed by the elements of B, and whose
columns are indexed by the elements of E \ B such that Ae,f = 1 if e ∈ Pf and 0 otherwise. This
is called the base-representation matrix of the matroid M with base B.

Then the BAP problem is

min{cx : Ax ≥ 1, x ∈ {0, 1}(|E|−r)}.

We now turn to studying the approximability and integrality gap of this program for common
classes of matroids.

5.1 Set-Cover Hardness for Binary Matroids

A matroid is a “linear” or “representable” matroid if its independent sets are the subsets of linearly
independent columns of some matrix over a field F. A binary matroid is a matroid which is

72

representable over the field with two elements F2.

We will show that there is a Set-Cover hardness for the Base Augmentation Problem in the case
that the matroid is a binary matroid. To do this, we show that given an arbitrary instance of Set
Cover, we can provide an equivalent instance of BAP on a binary matroid with a specified base B.

Theorem 5.1.1. The Base Augmentation Problem for binary matroids is equivalent to Set Cover.

Proof. Given an instance of set cover with ground set U = {u1, . . . , un} and subsets S = {S1, . . . , Sm},
we create a linear matroid with vectors in Fn

2 as follows. For each ui ∈ U , there is the standard
basis vector ei. These vectors will form a basis for the rank n matroid we will create. For each
subset Sj ∈ S, we will form the vector χS which is the characteristic vector of the subset S. See
Figure 5.1.

Figure 5.1: A figure illustrating the reduction from general Set Cover to BAP on a linear matroid.

5.2 Set-Cover Hardness for Transversal Matroids

In this section, we show that the Base Augmentation Problem is Set Cover hard for transversal
matroids (even those whose rank is equal to |R|, where G = (L ∪R,E) is the bipartite graph).

We recall the definition of a transversal matroid. Let G = (L ∪ R,E) be a bipartite graph with
a maximum matching of cardinality r. The subsets of L which can be saturated by a matching
form the independent sets of a matroid M with ground set L. Thus, the rank function r(A) is the
maximum size of a matchable subset of A. This is called a transversal matroid.

In the BAP problem for a transversal matroid, we are given a base B ⊆ L which can be saturated
by a matching. Let r := |B| be the rank of the matroid. We are also given weights wu ≥ 0 for
u ∈ (L \B).

Theorem 5.2.1. The Base Augmentation Problem for transversal matroids is equivalent to Set
Cover.

Proof. Given an instance of Set Cover with ground set U = {u1, . . . , un} and subsets S = {S1, . . . , Sm},
we create a transversal matroid as follows. We create a bipartite graph G = (L ∪ R,E), where
|L| = n+m and |R| = n. There is a matching of size n between vertices {ℓ1, . . . , ℓn} and {r1, . . . , rn}.

73

Figure 5.2: A figure illustrating the reduction from general Set Cover to BAP on a linear matroid

Finally, each vertex ℓn+i for 1 ≤ i ≤ m is adjacent to the elements covered by set Si ∈ S. Clearly,
feasible solutions to the BAP instance correspond exactly to feasible covers of U . See Figure 5.2.

5.3 Laminar Matroids and their Duals

In this section, we show that the Base Augmentation Problem is polynomial time solvable for
laminar matroids.

There are, as is typical in matroid theory, several equivalent ways to define laminar matroids. The
most common way to define them is to specify a tree, with non-negative integer capacities on it’s
internal nodes. The ground set of the matroid corresponds to the leaves of this tree, and a subset
of leaves is independent if the number of leaves chosen respects the capacities at each internal node.
That is, A is independent if for every internal node v, we have |Tv ∩ A| is at most cv where cv is
the capacity of internal node v and Tv is the subtree rooted at v.

Figure 5.3: A laminar matroid and its associated laminar family.

Recall that the Base Augmentation Problem induces a Set Cover instance which involves covering
B with the fundamental paths of elements in E \B. We show that in the case of a laminar matroid,
the constraint matrix is totally unimodular, so the BAP problem on this class is tractable.

74

Theorem 5.3.1. The integrality gap of the set covering relaxation for BAP on laminar matroids
is 1. Hence BAP on laminar matroids can be solved in polynomial time.

Proof. Given a laminar matroid with base B, the collection of fundamental paths of elements in
E \ B themselves form a laminar family. Thus, the base-representation matrix is the incidence
matrix of a laminar family and hence is totally unimodular. In this case, the Set Cover instance is
a laminar family, and hence is solvable in polynomial time.

We also show a relationship between the BAP problem on a matroid M and its dual matroid M∗.
If A is the base-representation matrix for a matroid M with base B, then the constraint matrix for
the dual matroid M∗ with base E \B is equal to AT .

How can we understand the duals of laminar matroids? For this purpose, it is most enlightening to
consider a different definition of laminar matroids. All laminar matroids are obtained by beginning
with a trivial matroid (where every subset is independent), and repeatedly applying the operations
of truncation and direct sum. Hence, the duals of laminar matroids can be defined as any
matroid which can be obtained from a trivial matroid by applying the operations of direct sums,
and matroid extensions.

Because the tranposes of totally unimodular matrices are again totally unimodular, we obtain the
following result.

Corollary 5.3.2. The integrality gap of the set covering relaxation for BAP on duals of laminar
matroids is 1. Hence BAP on these matroids can be solved in polynomial time.

5.4 Network Matroids

A network matrix is a totally unimodular matrix which arises from directed paths in an oriented
tree. We define a network matroid to be the matroids whose base representation matrices are
signable to be network matrices or their transposes. These matroids are exactly the graphic and
co-graphic matroids.

We are already familiar with the Base Augmentation Problem for graphic matroids. This is the
Tree Augmentation Problem. The integrality gap of the Set Covering relaxation is not known
exactly, but it is at least 3

2 and at most 2. The current best approximation ratio for weighted TAP
is 1.5 + ε due to [TZ22c]. See Figure 5.4

Figure 5.4: The BAP problem for a graphic matroid is the well-studied Tree Augmentation Problem. The
green links form a feasible solution.

We show that the Base Augmentation Problem for co-graphic matroids corresponds to the Multi-
cut problem on trees. This problem can be approximation to within a factor of 2, and this is the

75

best known ratio. Indeed, since vertex cover is a special case of multi-cut on trees (in which the
tree is a star), we cannot hope to beat an approximation ratio of 2 assuming the unique games
conjecture. Thus, the approximability of this problem for the co-graphic case is well understood.

The constraint matrix corresponds to a matrix which is signable to be a network matrix. The
integrality gap of the linear relaxation for this problem is also known to be exactly 2. See Figure 5.5.

Figure 5.5: The BAP problem for a co-graphic matroid is the Multi-cut problem on trees. The green links
form a feasible solution

5.5 Regular Matroids

We say that a {0, 1}-matrix is TU-signable if some of its entries can negated so that is becomes
totally unimodular. We say that a {0, 1}-matrix is Network-signable if some of its entries can
negated so that is becomes a Network matrix.

A regular matroid is a matroid which is representable over any field. An alternative definition of
regular matroids are those matroids whose base-representation matrices are TU-signable.

We recall Seymour’s famous decomposition theorem which characterizes all totally unimodular
matrices as those which can be obtained by recursively by applying the k-sum operation for k ∈
{1, 2, 3} to Network matrices, tranposes of Network matrices, and the two R10 matrices shown
below [Sey80].


1 0 0 1 1
1 1 0 0 1
0 1 1 0 1
0 0 1 1 1
1 1 1 1 1

 and


1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1


Notice that both R10 matrices are totally unimodular.

The k-sum operations are general operations that can be applied to matroids, but since we are
working with the base-representation matrices, we will define them on matrices, and only for
k ∈ {1, 2, 3}. We use the definition from [PPAK09].

Definition 5.5.1. If A,B are matrices and a, d, b, c are column and row vectors of appropriate size
with entries in R, then

1-sum: A⊕1 B :=

[
A 0

0 B

]

76

2-sum:
[
A a

]
⊕2

[
b

B

]
:=

[
A ab

0 B

]

3-sum:

[
A a a

c 0 1

]
⊕3

[
1 0 b

d d B

]
:=

[
A ab

dc B

]
or A 0

b 1

c 1

⊕3

[
1 1 0

a d B

]
:=

[
A 0

D B

]
.

The analogous statement for TU-signable matrices is easily seen as a simple corollary of Seymour’s
theorem.

Corollary 5.5.2. Let A be a matrix which is TU-signable. Then A can be obtained by recursively
applying the k-sum operation for k ∈ {1, 2, 3} to Network-signable matrices, their transposes, and
the two R10 matrices.

What this means is that the constraint matrix for the BAP problem on regular matroids is con-
structed from the ingredients in the above three classes. We have seen that the Set Cover integrality
gaps of Network-signable matrices and transposes of Network-signable matrices are at most 2. It
is a straightforward exercise to check that the Set Cover integrality gaps for both R10 constraint
matrices are also at most 2.

Hence, as long as Set Cover integrality gaps are preserved under 1,2, and 3-sum operations, we
would have that the integrality gap for all regular matroids would be at most 2. This motivates
the following conjecture.

Conjecture 5.5.3. If A is an m× n is a TU-signable matrix, then the integrality gap of

min{cx : Ax ≥ 1, x ∈ {0, 1}n}

is at most 2. Equivalently, the integrality gap of the BAP problem for regular matroids is 2.

77

Chapter 6

Woodall’s Conjecture

We start by recalling Woodall’s conjecture. Let D = (V,A) be a digraph. A dicut is a cut
δ+(U) ⊆ A for some nonempty proper vertex subset U such that δ−(U) = ∅. A dijoin is an arc
subset that intersects every dicut at least once.

Conjecture 6.0.1 (Woodall’s Conjecture [Woo78]). For any directed graph D = (V,A),if τ is the
minimum cardinality of a dicut, then there exist τ dijoint dijoins.

In this chapter, we describe a lifting operation which allows us to reduce Woodall’s conjecture to a
more structured class of bipartite, semi-regular instances. Then we use this reduction to prove the
following theorem, demonstrating the existence of an admissible dijoin.

Theorem 6.0.2. Let D = (V,A) be a digraph, and τ ≥ 3 the minimum cardinality of a dicut.
Then there exists a dijoin J such that for every dicut δ+(U), |δ+(U) \ J | ≥ τ − 1.

This is based on joint work with Ahmad Abdi and Gérard Cornuéjols, and appeared in the SIAM
Journal of Discrete Mathematics [ACZ23].

6.1 Lifting

In this section, we prove that Woodall’s conjecture is equivalent to the following.

Conjecture 6.1.1. Let D = (V,A) be a digraph, and let τ be the minimum cardinality of a dicut.
Suppose every vertex is either a sink of degree τ , or a source of degree ∈ {τ, τ + 1}. Then there
exist τ dijoint dijoins.

We begin by defining the notion of the imbalancedness of vertices in a directed graph. For each
vertex u ∈ V , the imbalance of u is

imb(u) := deg+(u)− deg−(u) = |δ+(u)| − |δ−(u)|

and for each U ⊆ V , the imbalance of U is

imb(U) :=
∑
u∈U

imb(u) = |δ+(U)| − |δ−(U)|.

Theorem 6.1.2. Let D = (V,A) be a digraph without a cut-vertex where the minimum cardinality
of a dicut is τ ≥ 3. Then there exists a digraph D′ = (V ′, A′) without a cut-vertex such that

78

1. every vertex is a source or a sink of degree τ or τ + 1,

2. every vertex of degree τ + 1 is a source, and the number of such vertices is equal to∑
(imb(u) mod τ : u ∈ V)

3. A ⊆ A′, every dicut in D corresponds to a dicut in D′, and the minimum size of a dicut in
D′ is τ , and

4. if J ′ is a dijoin in D′, then J ′ ∩A is a dijoin in D.

Here, m mod n is the integer d ∈ {0, 1, . . . , n− 1} such that n | m+ d.

To prove this theorem, we replace non-compliant vertices with certain gadgets, designed in the next
subsection, by means of un-contraction. After building the gadgets, we prove the theorem.

6.1.1 Gadgets

Lemma 6.1.3. Given integers r ≥ 2 and k ≥ r, there is an r-regular r-edge-connected bipartite
graph G = (L ∪ R,E) with |L| = |R| = k, where G has no cut-vertex, and if r ≥ 3, then every
minimum cut of G is trivial.

Proof. Let L = {ℓ0, . . . , ℓk−1} and R = {r0, . . . , rk−1}. We will form r edge-disjoint perfect match-
ings: For i ∈ {0, . . . , r − 1}, let

Mi := {(ℓj , ri+j) : j ∈ {0, . . . , k − 1}},

where i+ j is taken modulo k.

We take G =
⋃r−1

i=0 Mi. Clearly G is r-regular, and has no cut-vertex. Furthermore, as k ≥ r, each
Mi ∪Mi+1 is isomorphic to a Hamilton circuit on 2k vertices. So you could say that if all edges in
G were doubled, G would be an edge-disjoint union of r Hamilton circuits, implying that every cut
has at least 2r edges crossing it. In fact, however, every edge of G is counted twice, so we get that
G is r-edge-connected.

Next assume that r ≥ 3. We prove that every minimum cut is trivial. Suppose otherwise. Let
δ(U) be a nontrivial minimum cut of G, of size r. Then each Mi ∪Mi+1 crosses U exactly twice,
implying in turn that the edges of Mi ∪Mi+1 in G[U] form a path.

Since M0 ∪ M1 forms a path in G[U], and |U |, |U | ≥ 2, we may assume that U = {r0, ℓ0, . . .}
and U = {. . . , rk−1, ℓk−1}. In particular, (ℓk−1, r0) ∈ M1 ∩ δ(U). If r1 ∈ U and ℓk−2 ∈ U ,
then (ℓk−1, r1), (ℓk−2, r0) ∈ M2 ∩ δ(U), so |δ(U) ∩ (M1 ∪M2)| ≥ 3, a contradiction. Otherwise,
either U = {r0, ℓ0} or U = {rk−1, ℓk−1}. Since k ≥ r, G has no parallel edges, so in both cases,
|δ(U)| = 2r − 1 > r, a contradiction.

Remark 6.1.4. Adding a vertex v of degree at least d to a d-edge-connected graph G yields a
d-edge-connected graph G′. Moreover, if G has no cut-vertex, every cut of size d in G is trivial,
and v has at least two distinct neighbors in G′, then G′ has no cut-vertex, and every cut of size d
in G′ is trivial.

Lemma 6.1.5 (Gadget 1). Given integers a, b, r such that r ≥ 2, b > r, and a(r + 1) = br, there
is a bipartite graph G = (A ∪B,E) with |A| = a, |B| = b, such that the vertices in A have degree
r+1, the vertices in B have degree r, G has no cut-vertex, is r-edge-connected, and every minimum
cut is trivial.

79

Proof. Assume in the first case that r = 2. Let G′ = (A∪B′, E′) be the circuit on 2a vertices, with
bipartition A,B′. Then connect every node in A to the opposite node of the circuit. Since 3a = 2b,
a is even, so every node of A is paired with another node in A. Now subdivide every new edge,
add the new vertices to B′ to create B, and call the new graph G = (A ∪B,E), which is bipartite
with bipartition A,B. It can be readily verified G is the desired graph.

Assume in the remaining case that r ≥ 3. We begin by using Lemma 6.1.3 with parameters r
and k = a = b

r+1 · r ≥ r to obtain an r-edge-connected bipartite graph G′ = (A ∪ B′, E′) with
|A| = |B′| = a, where G′ has no cut-vertex, and every minimum cut is trivial. Now, create b − a
extra nodes, put them into B′ to create B, and attach each of them to r distinct nodes of A so that
every vertex in A now has degree r + 1. Call this new graph G = (A ∪ B,E), which is bipartite
with bipartition A,B, where every vertex in A has degree r + 1, every vertex in B has degree r,
and |A| = a, |B| = b. Moreover, by a repeated application of Remark 6.1.4, we see that G has no
cut-vertex, is r-edge-connected, and every minimum cut is trivial, as desired.

Lemma 6.1.6 (Gadget 2). Take an integer τ ≥ 3, and another integer d ≥ τ such that τ | d. Then
there exists a graph G without a cut-vertex such that

• G is a (τ − 1)-edge-connected bipartite graph with bipartition L ∪R,

• L has d vertices of degree τ − 1, and all its other vertices, of which there are at least τ − 1
many, have degree τ , and

• every vertex in R has degree τ .

Proof. Suppose d = τc for some integer c ≥ 1. Let k ≥ 2 be an arbitrary integer. Let H be a (τ−1)-
regular (τ − 1)-edge-connected bipartite graph on 2kcτ vertices and without a cut-vertex, whose
existence is guaranteed by Lemma 6.1.3. Let L′∪R′ be the bipartition ofH, where |L′| = |R′| = kcτ .
Pick a subset S ⊆ L′ of size (k − 1)cτ . Create (k − 1)c new vertices of degree τ , put them into R′

to create R, and attach them to the vertices in S so that the vertices in S now have degree τ . Note
that the cτ vertices in L′ \S have degree τ − 1, and there are still kcτ vertices of degree τ − 1 in R.

Next, introduce kc new vertices ℓ1, . . . , ℓkc, and add them to L′ to create L. Each new vertex will
have degree τ and attach to distinct vertices of degree τ − 1 in R. Thus, all kcτ many degree τ − 1
vertices in R become degree τ .

Let G be the new graph, which is bipartite with bipartition L ∪R. Clearly, G satisfies the desired
degree conditions. Moreover, since H is (τ − 1) edge-connected and has no cut-vertex, and every
vertex added has (simple) degree τ , it follows that G is (τ − 1)-edge-connected and has no cut-
vertex.

6.1.2 Proof of the Reduction

To create D′, we shall go through three phases.

Phase 1: In this phase, we replace every vertex that is neither a source nor a sink by an appropriate
gadget. By the end of this phase, D is turned into a digraph D1 = (V1, A1) without a cut-vertex
such that

1.1 every vertex is either a source or a sink,

1.2
∑

(imbD(u) mod τ : u ∈ V) =
∑

(imbD1(u) mod τ : u ∈ V1),

80

1.3 A ⊆ A1, every dicut in D corresponds to a dicut in D1, and the minimum size of a dicut in
D1 is τ , and

1.4 if J1 is a dijoin in D1, then J1 ∩A is a dijoin in D.

To this end, for every v that is neither a sink nor a source:

We replace v by two nodes v+, v−, where all the arcs previously leaving (resp. entering)
v now leave (resp. enter) v+ (resp. v−). Furthermore, we place τ +(−deg−(v) mod τ)
parallel arcs from v+ to v−.

At the end of this process, we create a digraph D1 = (V1, A1) without a cut-vertex that satisfies
1.1-1.2. To see that 1.3-1.4 are satisfied, note that for I := A1−A, we have D = D1/I. As a result,
1.4 is satisfied, and every dicut in D remains a dicut in D1. The latter, combined with the fact
that at least τ parallel arcs are placed from v+ to v−, guarantees that 1.3 is satisfied, too.

Phase 2: In this phase, we replace every sink of degree cτ − k where 0 ≤ k < τ , by a gadget
involving only sources and sinks of degree τ , and exactly k sources of degree τ + 1. By the end of
this phase, D1 is turned into a digraph D2 = (V2, A2) without a cut-vertex such that

2.1 every vertex is either a source or a sink, and every vertex of degree ̸= τ is a source,

2.2
∑

(imbD1(u) mod τ : u ∈ V1) =
∑

(imbD2(u) mod τ : u ∈ V2), and the number of new sources
of degree τ + 1 in D2 is equal to

∑
(imb(v) mod τ : v is a sink of D1),

2.3 A1 ⊆ A2, every dicut in D1 corresponds to a dicut in D2, and the minimum size of a dicut in
D2 is τ , and

2.4 if J2 is a dijoin in D2, then J2 ∩A1 is a dijoin in D1.

To this end, for every sink v of degree cτ − k, where 0 ≤ k < τ :

We create cτ − k new sinks which will each take exactly one of the incoming arcs
going into v. Now, we place down k many sources of degree τ + 1, such that their
neighborhoods are pairwise disjoint, creating k(τ + 1) additional sinks. Thus in total,
we have created k(τ +1)+ cτ − k sinks of degree 1, as well as k sources of degree τ +1.

To finish this gadget, we just need the sinks to have degree τ . So we add an appropriate
orientation of the graph H obtained by applying Lemma 6.1.5 with parameters r =
τ − 1 ≥ 2, b = k(τ + 1) + cτ − k = (c+ k)τ > r and a = br/(r+ 1). In this orientation,
the b many, old vertices remain sinks, while the a many, new vertices become sources.

In the construction just described, note that H has no cut-vertex, is (τ − 1)-edge-connected, and
every minimum cut is trivial. Note that the underlying undirected graph of the resulting gadget, call
it H ′, is obtained from H by adding k vertices of degree τ+1; denote this set byK = V (H ′)−V (H).
In particular, H ′ has no cut-vertex. Thus, the resulting digraph obtained by replacing v with the
gadget, call it D′

2, has no cut-vertex.

We now show that the size of the smallest dicut in D′
2 is at least τ . Consider a dicut C = δ+(U)

in D′
2. If U does not separate V (H), then C would be a dicut of D′

2/H, which is obtained from

81

D1 by adding, for each u ∈ K, τ + 1 parallel arcs from u to v. As every dicut of D1 has size at
least τ , so does every dicut of D′

2/H, so |C| ≥ τ . Otherwise, U separates V (H), implying in turn
that |C| ≥ τ − 1, as H is (τ − 1)-edge-connected. If C contains an arc outside A(H), then this
additional arc gives |C| ≥ (τ − 1)+1 = τ . Otherwise, C is a dicut of the oriented H. In particular,
since v is not a cut-vertex of D1 (as D1 has no cut-vertex), it follows that U does not separate
V (D′

2\H ′) = V (D1\v). It can now be readily checked that C does not correspond to a trivial dicut
of H, implying in turn that |C| ≥ τ , as every nontrivial cut of H has size at least τ , as required.

At the end of this process, we create a digraph D2 = (V2, A2) without a cut-vertex, one that satisfies
2.1-2.4 for similar reasons as Phase 1.

Phase 3: In this final phase, we replace every source of degree ̸= τ, τ + 1, and more precisely of
degree cτ+k where 0 ≤ k < τ , by a gadget involving only sources and sinks of degree τ , and exactly
k sources of degree τ + 1. By the end of this phase, D2 is turned into a digraph D′ = (V ′, A′)
without a cut-vertex such that

3.1 every vertex is either a source or a sink of degree τ or τ + 1, and every vertex of degree ̸= τ
is a source,

3.2
∑

(imbD2(u) mod τ : u ∈ V2) =
∑

(imbD′(u) mod τ : u ∈ V ′), and the number of sources
of degree τ + 1 in D′ is equal to

∑
(imb(v) mod τ : v is a source of D2),

3.3 A2 ⊆ A′, every dicut in D2 corresponds to a dicut in D′, and the minimum size of a dicut in
D′ is τ , and

3.4 if J ′ is a dijoin in D′, then J ′ ∩A2 is a dijoin in D2.

To this end, for every source u of degree ̸= τ, τ + 1, and more precisely of degree cτ + k, where
0 ≤ k < τ :

Let d := cτ . Let Gu be the gadget from Lemma 6.1.6 with respect to parameters τ, d,
and with bipartition L∪R. Then orient the edges of Gu from L to R in order to obtain
Du. Then replace vertex u by the digraph Du, where the deg(u) = d+k arcs previously
leaving u now leave d+ k distinct vertices in L including all the vertices of degree τ − 1
in L. Let L′ be the set of these d+ k vertices in L.

Observe that every vertex of Du is a source or a sink of degree τ or τ +1, that all the degree τ +1
vertices are contained in L, and there is k many such vertices.

LetD′′ be the digraph obtained fromD2 by replacing u with the gadgetDu. Since Gu, and therefore
Du, has no cut-vertex, it follows that D′′ has no cut-vertex.

We claim that every dicut in D′′ has size at least τ . Let C = δ+(U) be a dicut of D′′. If U does not
separate V (Du), then C is a dicut of D′′/Du = D2, so |C| ≥ τ . Otherwise, U separates V (Du). In
particular, since Gu is (τ − 1)-edge-connected, it follows that |C| ≥ τ − 1. If U separates L′, then
since u is not a cut-vertex of D2 (as D2 has no cut-vertex), we would have |C| ≥ (τ − 1) + 1 = τ .
Otherwise, U does not separate L′. If U separates V (D′\Du), then |C| ≥ (τ−1)+1 = τ . Otherwise,
U does not separate V (D′ \Du). If U separates L′ from V (D′ \Du), then |C| ≥ (τ − 1) + |L′| ≥ τ .
Otherwise, U does not separate L′∪V (D′\Du). Consequently, either U or U is equal to V (Du)−L′.

82

Since every vertex in V (Du)− L′ is a source or a sink of degree τ , and since C = δ+(U), it follows
that |C| ≡ 0 (mod τ), implying in turn that |C| ≥ τ , as required.
At the end of this process, we create a digraph D′ = (V ′, A′) without a cut-vertex, one that satisfies
3.1-3.4 for similar reasons as Phase 1.

The digraph D′ that we obtain from Phase 3 is the desired digraph, as can be readily verified by
the reader.

The above lifting procedure allows us to reduce Woodall’s conjecture to these structured digraphs.

Theorem 6.1.7. Take an integer τ ≥ 3. Then the following statements are equivalent:

1. Conjecture 6.0.1 (Woodall’s Conjecture) for τ ,

2. Conjecture 6.1.1 for τ ,

Proof. (1) ⇒ (2) is clear. (2) ⇒ (1) Let D be a digraph where the minimum cardinality of a dicut
is τ . We need to prove that D has τ disjoint dijoins. We may assume that D has no cut-vertex.
Thus, by Theorem 6.1.2, there exists a digraph D′ where

• every vertex is a source or a sink of degree τ or τ + 1,

• every vertex of degree τ + 1 is a source,

• A(D) ⊆ A(D′), every dicut in D corresponds to a dicut in D′, and the minimum size of a
dicut in D′ is τ ,

• if J ′ is a dijoin in D′, then J ′ ∩A(D) is a dijoin D.

Consequently, it suffices to find τ disjoint dijoins in D′, which follows from (2).

6.2 An Admissible Dijoin

Let τ ≥ 2 be an integer. A (τ, τ+1)-biregular bipartite digraph is a digraph D = (V,A) where every
vertex is either a sink of degree τ or a source of degree τ or τ + 1, and every dicut has cardinality
at least τ . A node u is active if it has degree τ + 1. Given a subset U ⊆ V , define

sources(U) := {u ∈ U : u is a source of D}
sinks(U) := {u ∈ U : u is a sink of D}
depth(U) := |sinks(U) | − |sources(U) |

a(U) := {u ∈ U : u is an active node}.

A subset P ⊆ V satisfying

P ⊆ a(V)

|P | = depth(V)

|P ∩ U | ≥ ρ+ depth(U) ∀ dicuts δ+(U) of D

83

for ρ = 0 is called weakly admissible; if P satisfies the conditions above for ρ = 1, then it is called
admissible. A balanced edge cover is a subset F ⊆ A such that⌊

|δ(v)|
τ

⌋
≤ |J ∩ δ(v)| ≤

⌈
|δ(v)|
τ

⌉
∀v ∈ V.

The set of dyad centers of F is dc(F) := {u ∈ V : degF (v) = 2}. We will show that P ⊆ a(V)
is weakly admissible if, and only if, P = dc(F) for some balanced edge cover F ⊆ A. Moreover,
P ⊆ a(V) is admissible if, and only if, P = dc(F) for some balanced edge cover F ⊆ A that is a
dijoin.

Given that d := depth(V), the number of active nodes is dτ . The depth of a dicut is the depth of
its shore.

Remark 6.2.1. Let U,W be subsets of V . Then depth(U ∪W) + depth(U ∩W) = depth(U) +
depth(W).

6.2.1 Balanced edge covers

An edge cover is an F ⊆ A where F ∩ δ(u) ̸= ∅ for all u ∈ V . As mentioned above, an edge cover
F is called balanced if for each u ∈ V ,⌈

deg(u)

τ

⌉
≥ |F ∩ δ(u)| ≥

⌊
deg(u)

τ

⌋
.

Observe that every balanced edge cover is the vertex disjoint union of d dyads, whose centers are
active nodes, and |sources(V) | − d edges.

Proposition 6.2.2. Let F1, . . . , Fτ be disjoint dijoins of D. Then the dijoins partition A, and each
is a balanced edge cover.

Proof. For each u ∈ sinks(V), δ−(u) is a minimum dicut, so the arcs incident with u are evenly
distributed amongst the τ disjoint dijoins. As every arc in A is incident with a vertex in sinks(V),
it follows that F1, . . . , Fτ partition A, and that for each u ∈ sinks(V) and i ∈ [τ], |Fi ∩ δ−(u)| = 1.
Now let v ∈ sources(V). If deg(v) = τ , then the arcs incident with v are also evenly distributed
amongst the τ disjoint dijoins, so that |Fi ∩ δ+(v)| = 1 for each i ∈ [τ]. Otherwise, deg(v) = τ + 1,
i.e. v is an active node. In this case, τ − 1 of the dijoins have exactly one arc incident with v, and
the remaining dijoin has exactly two arcs incident with v.

The observations above imply that each Fi, i ∈ [τ] is a balanced edge cover, as required.

Remark 6.2.3. Let F be a balanced edge cover. Then for every dicut δ+(U),

|F ∩ δ+(U)| = |dc(F) ∩ U | − depth(U) .

In particular, F is a dijoin if, and only if, dc(F) is admissible, i.e., for every non-trivial dicut δ+(U),

|dc(F) ∩ U | ≥ depth(U) + 1.

Proposition 6.2.4. Let P ⊆ a(V). Then P is weakly admissible if, and only if, there exists a
balanced edge cover F such that dc(F) = P .

84

Proof. (⇐) Let F be a balanced edge cover such that dc(F) = P . By definition, |P | = d. Let
δ+(U) be a dicut. Then

0 ≤ |δ+(U) ∩ F | = |sources(U) |+ |U ∩ P | − |sinks(U) | = |U ∩ P | − depth(U) .

As the inequality holds for every dicut, it follows that P is weakly admissible. (⇒) Let b :=
1 + χP ∈ ZV

+. Then F ⊆ E is a balanced edge cover such that dc(F) = P if, and only if,
F is a perfect b-matching. Thus, it suffices to prove that a perfect b-matching exists. Since
b(sources(V)) = b(sinks(V)), it suffices to show that for each non-trivial vertex cover K ⊆ V of G,
b(K) ≥ 1

2b(V). To this end, let K be a non-trivial vertex cover, that is, K is a proper nonempty
subset of sources(V), and a proper nonempty subset of sinks(V). Let U := K△sinks(V). Then
δ+(U) is a dicut, so |U ∩ P | ≥ depth(U). Then

b(K)− 1

2
b(V) = b(K)− b(sinks(V))

= b(sources(U))− b(sinks(U))

= |sources(U) |+ |U ∩ P | − |sinks(U) |
= |U ∩ P | − depth(U)

≥ 0,

as required.

Lemma 6.2.5. The following statements hold:

1. A can be partitioned into τ balanced edge covers.

2. Let F1, . . . , Fτ be a partition of A into balanced edge covers. Then for every dicut δ+(U),
and for i, j ∈ [τ],

|Fi ∩ δ+(U)| − |Fj ∩ δ+(U)| = |dc(Fi) ∩ U | − |dc(Fj) ∩ U |.

Proof. (1) Let G be a τ -regular bipartite graph obtained from D as follows:

• introduce d = |sinks(V) | − |sources(V) | new vertices v1, . . . , vd,

• for each active node v, take a single edge ev incident with v,

• for each ev, replace the active end of ev with one of the new vertices v1, . . . , vd, in a way so
that by the end of the procedure, each vi has degree τ .

Observe now that any perfect matching of G corresponds to a balanced edge cover of D. Since G
is τ -edge-colourable, it follows that A can be partitioned into τ balanced edge covers. (2) follows
immediately from Remark 6.2.3.

6.2.2 Admissible partitions

Recall that a(V) ⊆ sources(V), the set of active nodes of D, has cardinality dτ . Recall that a
subset P ⊆ V is admissible if it has cardinality d, and

|U ∩ P | ≥ 1 + depth(U) for each dicut δ+(U).

85

An admissible partition of a(V) is a partition of it into τ admissible parts. Observe that if D has
τ disjoint dijoins, then by Proposition 6.2.2 and Remark 6.2.3, a(V) has an admissible partition.
Here, we prove this consequence as a first step towards proving Woodall’s Conjecture.

A polyhedron P has the integer decomposition property if it is integral, and for every integer k ≥ 2,
every integer point in P written as the sum of k points in P can be written as the sum of k integer
points in P .

Theorem 6.2.6 (see [Sch03], Corollary 42.1e). The base polytope of a matroid has the integer
decomposition property.

Let C be a family of subsets of a finite ground set V . A pair of sets U,W ∈ C are crossing if
U ∩W ̸= ∅ and U ∪W ̸= V . We say C is a crossing family if U ∩W,U ∪W ∈ C for all crossing
pairs U,W .

Theorem 6.2.7 ([FT84]). Let C be a crossing family over ground set V , and let g : C → Z be
a crossing submodular function. Then for any integer k, the set {B ⊆ V : |B| = k, |B ∩ U | ≤
g(U) ∀U ∈ C}, if nonempty, is the set of bases of a matroid.

Corollary 6.2.8. {P ⊆ V : P is admissible}, if nonempty, is the set of bases of a matroid.

Proof. Let C := {U ⊆ V : δ+(U) is a dicut}, which is a crossing family over ground set V . Then
the family of admissible sets is described as

{P ⊆ V : |P | = d, |P ∩ U | ≥ 1 + depth(U) ∀U ∈ C},

which we assume is nonempty. The family of complements of admissible sets can be described as

{P ⊆ V : |P | = |V | − d, |P ∩ U | ≤ |U | − 1− depth(U) ∀U ∈ C}.

Since g(U) := |U | − 1− depth(U) is a modular, hence submodular, function, and since the family
above is nonempty, it follows from Theorem 6.2.7 that the complements of admissible sets form the
bases of a matroid, implying in turn that admissible sets form the bases of the dual matroid.

Theorem 6.2.9 ([Sch03], Theorem 49.7). Let C be a crossing family over ground set V , let g : C →
Z be a crossing submodular function, and let k be an integer. Then the system x(V) = k, x(U) ≤
g(U) ∀U ∈ C is box-TDI.

Theorem 6.2.10. Let D = (V,A) be a (τ, τ + 1)-biregular bipartite digraph. Then a(V) can be
partitioned into τ admissible sets.

Proof. Consider the system x(V) = d, x(U) ≥ 1 + depth(U) ∀U ∈ C. By Theorem 6.2.9, this
system is box-TDI, so the polytope

B(M) := {x ∈ [0, 1]V : x(V) = d, x(U) ≥ 1 + depth(U) ∀U ∈ C}

has 0 − 1 vertices. Now let x := χa(V) ∈ {0, 1}V , the incidence vector of the active nodes. Then
x(V) = a(V) = τd. Moreover, for every dicut δ+(U), x(U) = a(U) ≥ τ(1 + depth(U)). Thus,
1
τ x ∈ B(M), so B(M) is nonempty, implying in turn that an admissible set exists. In particular,
by Corollary 6.2.8, B(M) is the base polytope of a matroid, call it M . By Theorem 6.2.6, B(M)
has the integer decomposition property. Note that x is the sum of τ points in B(M), namely τ
identical copies of 1

τ x. Thus, by the integer decomposition property, x is the sum of τ integer points
in B(M). That is, a(V) admits a partition into τ admissible sets, so there exists an admissible
partition.

86

6.2.3 Finding an admissible dijoin

Proposition 6.2.11. Take an integer τ ≥ 3. Let D = (V,A) be a (τ, τ + 1)-biregular bipartite
digraph, and let P1, . . . , Pτ be an admissible partition. Then the following statements hold:

1. There exists a balanced edge cover F such that dc(F) = Pτ .

2. Let w := 1− χF ∈ {0, 1}A. Then for every dicut δ+(U), w(δ+(U)) ≥ τ − 1.

Proof. (1) follows from the weak admissibility of Pτ . (2) Let δ
+(U) be a dicut. If δ+(U) is a trivial

dicut, then w(δ+(U)) ∈ {τ − 1, τ}, so we are done. Otherwise, we have

w(δ+(U)) = |δ+(U)| − |F ∩ δ+(U)|
= a(U)− τ · depth(U)− |Pτ ∩ U |+ depth(U)

=

τ−1∑
i=1

|Pi ∩ U | − (τ − 1) · depth(U)

≥ (τ − 1)(1 + depth(U))− (τ − 1) · depth(U)

= τ − 1,

as required.

Proof of Theorem 6.0.2. This follows from Theorem 6.1.2 and Proposition 6.2.11. Let us elaborate.
Let D = (V,A) be a digraph without a cut-vertex where the minimum cardinality of a dicut is
τ ≥ 3. We need to find a dijoin J such that for w = 1 − χJ , w(δ

+(U)) ≥ τ − 1 for every dicut
δ+(U) of D.

By Theorem 6.1.2, there exists a digraph D′ = (V ′, A′) without a cut-vertex such that

• every vertex is a source of degree τ or τ + 1, or a sink of degree τ ,

• A ⊆ A′, every dicut in D corresponds to a dicut in D′, and the minimum size of a dicut in
D′ is τ , and

• if J ′ is a dijoin in D′, then J ′ ∩A is a dijoin in D.

By Theorem 6.2.10, D′ has an admissible partition P1, . . . , Pτ . Let J ′ ⊆ A′ be a balanced edge
cover of D′ such that dc(J ′) = Pτ . Let w

′ := 1−χJ ′ ∈ {0, 1}A′
. Then by Proposition 6.2.11, every

dicut of D′ has w′-weight at least τ − 1. Let J := J ′ ∩ A. By construction, J is a dijoin of D.
Let w := 1 − χJ ∈ {0, 1}A. We claim that every dicut of D has w-weight at least τ − 1, thereby
finishing the proof. To this end, let δ+(U) be a dicut of D. Then δ+(U) is also a dicut of D′, so
w′(δ+(U)) ≥ τ − 1. As δ+(U) ⊆ A, it follows that

w(δ+(U)) = |δ+(U)| − |δ+(U) ∩ J | = |δ+(U)| − |δ+(U) ∩ J ′| = w′(δ+(U)) ≥ τ − 1,

as required.

6.2.4 An important example

Denote by D27 the (3, 4)-biregular bipartite digraph presented in Figure 6.1.

This digraph shows that after finding one admissible dijoin, it may be the case that the remaining
weighted digraph is a counterexample to the Edmonds-Giles conjecture. This means that in order
to use the admissible dijoin in an optimal packing, it must be chosen carefully somehow, rather
than arbitrarily.

87

Figure 6.1: The digraph D27: A (3, 4)-biregular bipartite digraph. The active nodes are filled-in.

88

Chapter 7

Conclusion

When I was an undergraduate student at Rutgers, I did research for a summer under Professor
Oliver Pechenik at the DIMACS REU. Towards the end of the summer, as we were writing up the
results, I asked him if I should write a conclusion section for our paper. He told me that in math,
people don’t write conclusions, they just finish the last proof, put a little square at the bottom and
end.

In homage to my first ever research experience, at least in mathematics (we won’t discuss the fiascos
that occured when I was a materials science student), I will follow Professor Pechenik’s advice. 2

Update: Upon reading my conclusion above, Professor Samir Khuller told me that I might want
to write an actual conclusion. “You only write your PhD thesis once in your life,” he said. And of
course, he is completely right. Thanks Samir!

7.1 Future Directions

On the topic of approximation algorithms for network design, there are still many open problems,
some of which I consider fruitful directions of further study.

One natural question is to obtain a better-than-2 approximation for k-SCAP for k > 2. As dis-
cussed, this poses challenges as the cuts to be augmented in such a graph are no longer a subcol-
lection of the minimum cuts. New techniques are likely required to deal with this problem.

An interesting problem for which I am more hopeful arises from the study of networks with non-
uniform fault models. In this thesis, we used the edge-connectivity between pairs of nodes in the
graph as a measure of the resiliency of the network to edge failures. In this context, we seek to be
robust to the failure of any collection of edges of bounded size. In the “flexible” graph connectivity
setting, there are “safe” and “unsafe” edges in the graph to be augmented. We only seek to be
robust to the failure of the unsafe edges. This model was introduced by [Adj17].

It turns out that constructing such networks typically involves a two-phase approach where in
the first phase, a sufficiently connected graph is built assuming all edges are safe, and then an
augmentation step is performed to achieve the desired resilience properties.

This motivates the definition of what I call the Flexible Graph Connectivity Problem. Given a
k-edge-connected graph G = (V,E) where E = S ∪ U is partitioned into safe and unsafe edges,
we seek to add a minimum cost set of links so that the graph is still k-edge connected after the

89

failure of any unsafe edge. Equivalently, we seek to cover those minimum cuts of G which contain
at least one unsafe edge. This problem admits a 2-approximation via Jain’s algorithm or using
the primal-dual method [Jai01][WGMV93]. The goal would be to improve upon this ratio using a
relative greedy algorithm. The reason I am hopeful for this problem, is that - since we still need to
cover a subcollection of the minimum cuts of G - we may reduce to the case where G is a simple
cycle consisting of safe and unsafe edges.

There are several other problems of interest, which go beyond the notion of edge-connectivity.
For example, the problem of augmenting the vertex connectivity of a tree from 1 to 2 admits a
2-approximation, and no better approximation ratio is known [KT93]. Turning to directed graphs,
the Strong Connectivity Augmentation problem asks us to find a cheapest set of arcs to add to a
weakly connected digraph so that it becomes strongly connected. Again, this problem admits a
2-approximation, but no better algorithm is known.

There are many other models which can, in my opinion, be fruitfully applied to problems in network
design. There are many problems where only partial information of the input is given, which
is either adversarially or stochastically realized. For example, while online TAP admits a tight
O(log n)-competitive algorithm [NUW22], online CAP has not been studied as far as I know.

Finally, if anyone is reading this, I will give $100 dollars to anyone resolving the conjecture stated
in Chapter 5 on BAP for regular matroids, affirmatively or otherwise. If you would like to claim
the prize, please be in touch at mikhaelzlatin@gmail.com.

90

Bibliography

[ACZ23] Ahmad Abdi, Gérard Cornuéjols, and Michael Zlatin. On packing dijoins in digraphs
and weighted digraphs. SIAM Journal on Discrete Mathematics, 37(4):2417–2461,
2023.

[Adj17] David Adjiashvili. Beating approximation factor two for weighted tree augmentation
with bounded costs. Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2384–2399, 2017.

[Adj18] David Adjiashvili. Beating approximation factor two for weighted tree augmentation
with bounded costs. ACM Transactions on Algorithms (TALG), 15(2):1–26, 2018.

[AK06] Gautam Appa and Balázs Kotnyek. A bidirected generalization of network matrices.
Networks: An International Journal, 47(4):185–198, 2006.

[AKPP07] Gautam Appa, Balázs Kotnyek, Konstantinos Papalamprou, and Leonidas Pitsoulis.
Optimization with binet matrices. Operations research letters, 35(3):345–352, 2007.

[BD97] Al Borchers and Ding-Zhu Du. Thek-steiner ratio in graphs. SIAM Journal on Com-
puting, 26(3):857–869, 1997.

[CF96] Alberto Caprara and Matteo Fischetti. {0, 1/2}-chvátal-gomory cuts. Mathematical
Programming, 74(3):221–235, 1996.

[CG15] Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via
lift-and-project, part I: stemless TAP. CoRR, abs/1508.07504, 2015.

[CJR99] Joseph Cheriyan, Tibor Jordán, and R Ravi. On 2-coverings and 2-packings of laminar
families. Algorithms-ESA’99, pages 72–72, 1999.

[CKKK08] Joseph Cheriyan, Howard Karloff, Rohit Khandekar, and Jochen Könemann. On the
integrality ratio for tree augmentation. Operations Research Letters, 36(4):399–401,
2008.

[CLR23] Gérard Cornuéjols, Siyue Liu, and R. Ravi. Approximately packing dijoins via
nowhere-zero flows, 2023.

[CN13a] Nachshon Cohen and Zeev Nutov. A (1+ ln2)-approximation algorithm for minimum-
cost 2-edge-connectivity augmentation of trees with constant radius. Theoretical Com-
puter Science, 489:67–74, 2013.

91

[CN13b] Nachshon Cohen and Zeev Nutov. A (1+ln 2)-approximation algorithm for minimum-
cost 2-edge-connectivity augmentation of trees with constant radius. Theoret. Comput.
Sci., 489/490:67–74, 2013.

[DKL76] Efim A Dinitz, Alexander V Karzanov, and Michael V Lomonosov. On the structure of
the system of minimum edge cuts in a graph. Issledovaniya po Diskretnoi Optimizatsii,
pages 290–306, 1976.

[DS14] Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Proceedings
of the forty-sixth annual ACM symposium on Theory of computing, pages 624–633,
2014.

[DV94] Yefim Dinitz and Alek Vainshtein. The connectivity carcass of a vertex subset in a
graph and its incremental maintenance. In Proceedings of the twenty-sixth annual ACM
symposium on Theory of computing, pages 716–725, 1994.

[DW71] Stuart E Dreyfus and Robert A Wagner. The steiner problem in graphs. Networks,
1(3):195–207, 1971.

[ET76] Kapali P Eswaran and R Endre Tarjan. Augmentation problems. SIAM Journal on
Computing, 5(4):653–665, 1976.

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM
(JACM), 45(4):634–652, 1998.

[FF09] T. Fleiner and A. Frank. A quick proof for the cactus representation of mincuts. 2009.

[FGKS18] Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating
weighted tree augmentation via chvátal-gomory cuts. In Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 817–831. SIAM,
2018.

[FJ81] Greg N Frederickson and Joseph Ja’Ja’. Approximation algorithms for several graph
augmentation problems. SIAM Journal on Computing, 10(2):270–283, 1981.

[FJ82] Greg N Fredrickson and Joseph Jájá. On the relationship between the biconnec-
tivity augmentation and traveling salesman problem. Theoretical Computer Science,
19(2):189–201, 1982.

[FT84] A. Frank and É. Tardos. Matroids from crossing families. In A. Hajnal, L. Lovász,
and V.T. Sós, editors, Finite and Infinite Sets, pages 295–304. North-Holland, 1984.

[GGJAS21] Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Krzysztof Sornat. On
the cycle augmentation problem: hardness and approximation algorithms. Theory of
Computing Systems, 65(6):985–1008, 2021.

[GKZ18] Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation
for tree augmentation: saving by rewiring. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, pages 632–645. ACM, 2018.

[HZ23] Daniel Hathcock and Michael Zlatin. Improved approximation algorithms for steiner
connectivity augmentation problems, 2023.

92

[IR17] Jennifer Iglesias and R. Ravi. Coloring down: 3/2-approximation for special cases of
the weighted tree augmentation problem, 2017.

[IR22] Jennifer Iglesias and R. Ravi. Coloring down: 3/2-approximation for special cases of
the weighted tree augmentation problem. Operations Research Letters, 50(6):693–698,
2022.

[Jai01] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network
problem. Combinatorica, 21(1):39–60, 2001.

[KKL04] Guy Kortsarz, Robert Krauthgamer, and James R Lee. Hardness of approximation for
vertex-connectivity network design problems. SIAM Journal on Computing, 33(3):704–
720, 2004.

[KN16] Guy Kortsarz and Zeev Nutov. A simplified 3/2 ratio approximation algorithm for the
tree augmentation problem. Transaction on Algorithm, 12(2):23, 2016.

[KT93] Samir Khuller and Ramakrishna Thurimella. Approximation algorithms for graph
augmentation. Journal of Algorithms, 14(2):214–225, 1993.

[KV94] Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings.
Journal of the ACM (JACM), 41(2):214–235, 1994.

[Nut10] Zeev Nutov. Approximating steiner networks with node-weights. SIAM Journal on
Computing, 39(7):3001–3022, 2010.

[NUW22] Joseph Naor, Seeun William Umboh, and David P Williamson. Tight bounds for online
weighted tree augmentation. Algorithmica, 84(2):304–324, 2022.

[PPAK09] Leonidas Pitsoulis, Konstantinos Papalamprou, Gautam Appa, and Balázs Kotnyek.
On the representability of totally unimodular matrices on bidirected graphs. Discrete
Mathematics, 309(16):5024–5042, 2009.

[PRZ22] Ojas Parekh, Ramamoorthi Ravi, and Michael Zlatin. On small-depth tree augmenta-
tions. Operations Research Letters, 50:667–673, 11 2022.

[Rav94] R. Ravi. Steiner Trees and Beyond: Approximation Algorithms for Network Design.
PhD thesis, Brown University, 1994.

[RZZ23] R Ravi, Weizhong Zhang, and Michael Zlatin. Approximation algorithms for steiner
tree augmentation problems. In Proceedings of the 2023 Annual ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), pages 2429–2448. SIAM, 2023.

[Sch03] A. Schrijver. Combinatorial Optimization. Polyhedra and Efficiency. Springer, Berlin,
Heidelberg, 2003.

[Sey77] P.D. Seymour. The matroids with the max-flow min-cut property. Journal of Combi-
natorial Theory, Series B, 23(2):189–222, 1977.

[Sey80] Paul D Seymour. Decomposition of regular matroids. Journal of combinatorial theory,
Series B, 28(3):305–359, 1980.

93

[Sla96] Petr Slav́ık. A tight analysis of the greedy algorithm for set cover. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing, pages 435–441,
1996.

[TZ21a] Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree
augmentation, 2021.

[TZ21b] Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and
steiner tree, 2021.

[TZ22a] Vera Traub and Rico Zenklusen. A (1.5+\epsilon)-approximation algorithm for
weighted connectivity augmentation. arXiv preprint arXiv:2209.07860, 2022.

[TZ22b] Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree
augmentation. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 1–12, 2022.

[TZ22c] Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and
steiner tree. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 3253–3272. SIAM, 2022.

[WGMV93] David P Williamson, Michel X Goemans, Milena Mihail, and Vijay V Vazirani. A
primal-dual approximation algorithm for generalized steiner network problems. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages
708–717, 1993.

[Woo78] D.R. Woodall. Menger and König systems. In Y. Alavi and D.R. Lick, editors, Theory
and Applications of Graphs., volume 642 of Lecture Notes in Mathematics. Springer,
Berlin, Heidelberg, 1978.

94

	Introduction
	Approximation Algorithms for Network Design
	Connectivity Augmentation Problems
	Beyond Global Connectivity
	Integrality Gaps for TAP

	Integrality Gaps for Set Cover
	The Base Augmentation Problem
	Woodall's Conjecture

	The Steiner Tree Augmentation Problem
	Preliminaries
	Our Techniques
	An Improved Approximation for Edge Weighted STAP
	A Structured 2-Approximation for STAP
	Relative Greedy for STAP
	Effects of -restriction
	The Decomposition Theorem
	Dynamic Programming to find the best k-thin component
	A (1.5+)-Approximate Local Search Algorithm

	The Steiner Connectivity Augmentation Problem
	Preliminaries
	Technical Overview
	Reductions to SRAP
	A structured 2-approximate solution for SRAP
	Complete instances
	An R-special 2-approximate solution

	A (1+2 +)-approximation for SRAP
	Dropping Directed Links
	The Decomposition Theorem for Hyper-SRAP
	Dynamic Programming to find the best -thin component
	A (1.5+)-approximation for k-SAG

	On Small Depth Tree Augmentations
	Preliminaries
	The cut-LP Relaxation
	ODD-LP Relaxation

	Improved Integrality Gaps for Trees of depth 2 and 3
	Integrality gap for k-level trees

	The Base Augmentation Problem
	Set-Cover Hardness for Binary Matroids
	Set-Cover Hardness for Transversal Matroids
	Laminar Matroids and their Duals
	Network Matroids
	Regular Matroids

	Woodall's Conjecture
	Lifting
	Gadgets
	Proof of the Reduction

	An Admissible Dijoin
	Balanced edge covers
	Admissible partitions
	Finding an admissible dijoin
	An important example

	Conclusion
	Future Directions

	Bibliography

